Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Grimes is active.

Publication


Featured researches published by Jonathan M. Grimes.


Nature | 1998

The atomic structure of the bluetongue virus core.

Jonathan M. Grimes; J. Nicholas Burroughs; Patrice Gouet; Jonathan M. Diprose; R. Malby; Stéphan Zientara; Peter P. C. Mertens; David I. Stuart

The structure of the core particle of bluetongue virus has been determined by X-ray crystallography at a resolution approaching 3.5 Å. This transcriptionally active compartment, 700 Å in diameter, represents the largest molecular structure determined in such detail. The atomic structure indicates how approximately 1,000 protein components self-assemble, using both the classical mechanism of quasi-equivalent contacts, which are achieved through triangulation, and a different method, which we term geometrical quasi-equivalence.


Nature Genetics | 2013

Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas

Claire Palles; Jean-Baptiste Cazier; Kimberley Howarth; Enric Domingo; Angela Jones; Peter Broderick; Zoe Kemp; Sarah L. Spain; Estrella Guarino; Israel Salguero; Amy Sherborne; Daniel Chubb; Luis Carvajal-Carmona; Yusanne Ma; Kulvinder Kaur; Sara E. Dobbins; Ella Barclay; Maggie Gorman; Lynn Martin; Michal Kovac; Sean Humphray; Anneke Lucassen; Christopher Holmes; David R. Bentley; Peter Donnelly; Jenny C. Taylor; Christos Petridis; Rebecca Roylance; Elinor Sawyer; David Kerr

Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.


Nature | 2001

A mechanism for initiating RNA-dependent RNA polymerization.

Sarah J. Butcher; Jonathan M. Grimes; Eugeny V. Makeyev; Dennis H. Bamford; David I. Stuart

In most RNA viruses, genome replication and transcription are catalysed by a viral RNA-dependent RNA polymerase. Double-stranded RNA viruses perform these operations in a capsid (the polymerase complex), using an enzyme that can read both single- and double-stranded RNA. Structures have been solved for such viral capsids, but they do not resolve the polymerase subunits in any detail. Here we show that the 2 Å resolution X-ray structure of the active polymerase subunit from the double-stranded RNA bacteriophage φ6 (refs 3, 4) is highly similar to that of the polymerase of hepatitis C virus, providing an evolutionary link between double-stranded RNA viruses and flaviviruses. By crystal soaking and co-crystallization, we determined a number of other structures, including complexes with oligonucleotide and/or nucleoside triphosphates (NTPs), that suggest a mechanism by which the incoming double-stranded RNA is opened up to feed the template through to the active site, while the substrates enter by another route. The template strand initially overshoots, locking into a specificity pocket, and then, in the presence of cognate NTPs, reverses to form the initiation complex; this process engages two NTPs, one of which acts with the carboxy-terminal domain of the protein to prime the reaction. Our results provide a working model for the initiation of replication and transcription.


Cell | 1997

The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation.

Leslie D. Burtnick; Edward K. Koepf; Jonathan M. Grimes; E. Yvonne Jones; David I. Stuart; Paul J. McLaughlin; Robert Robinson

The structure of gelsolin has been determined by crystallography and comprises six structurally related domains that, in a Ca2+-free environment, pack together to form a compact globular structure in which the putative actin-binding sequences are not sufficiently exposed to enable binding to occur. We propose that binding Ca2+ can release the connections that join the N- and C-terminal halves of gelsolin, enabling each half to bind actin relatively independently. Domain shifts are proposed in response to Ca2+ as bases for models of how gelsolin acts to sever, cap, or nucleate F-actin filaments. The structure also invites discussion of polyphosphoinositide binding to segment 2 and suggests how mutation at Asp-187 could initiate a series of events that lead to deposition of amyloid plaques, as observed in victims of familial amyloidosis (Finnish type).


Nature Structural & Molecular Biology | 1999

Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation

Juthathip Mongkolsapaya; Jonathan M. Grimes; Nan Chen; Xiao-Ning Xu; David I. Stuart; E.Y Jones; Gavin R. Screaton

TRAIL, an apoptosis inducing ligand, has at least four cell surface receptors including the death receptor DR5. Here we report the crystal structure at 2.2 Å resolution of a complex between TRAIL and the extracellular region of DR5. TRAIL forms a central homotrimer around which three DR5 molecules bind. Radical differences in the surface charge of the ligand, together with variation in the alignment of the two receptor domains confer specificity between members of these ligand and receptor families. The existence of a switch mechanism allowing variation in receptor domain alignment may mean that it is possible to engineer receptors with multiple specificities by exploiting contact positions unique to individual receptor–ligand pairs.


Nature | 2004

Insights into assembly from structural analysis of bacteriophage PRD1

Nicola G. A. Abrescia; Joseph J.B. Cockburn; Jonathan M. Grimes; Geoffrey C. Sutton; Jonathan M. Diprose; Sarah J. Butcher; Stephen D. Fuller; Carmen San Martín; Roger M. Burnett; David I. Stuart; Dennis H. Bamford; Jaana K. H. Bamford

The structure of the membrane-containing bacteriophage PRD1 has been determined by X-ray crystallography at about 4 Å resolution. Here we describe the structure and location of proteins P3, P16, P30 and P31. Different structural proteins seem to have specialist roles in controlling virus assembly. The linearly extended P30 appears to nucleate the formation of the icosahedral facets (composed of trimers of the major capsid protein, P3) and acts as a molecular tape-measure, defining the size of the virus and cementing the facets together. Pentamers of P31 form the vertex base, interlocking with subunits of P3 and interacting with the membrane protein P16. The architectural similarities with adenovirus and one of the largest known virus particles PBCV-1 support the notion that the mechanism of assembly of PRD1 is scaleable and applies across the major viral lineage formed by these viruses.


Structure | 2006

Lysine Methylation as a Routine Rescue Strategy for Protein Crystallization

Thomas S. Walter; Christoph Meier; René Assenberg; Kin Fai Au; Jingshan Ren; Anil Verma; Joanne E. Nettleship; Raymond J. Owens; David I. Stuart; Jonathan M. Grimes

Summary Crystallization remains a critical step in X-ray structure determination. Because it is not generally possible to rationally predict crystallization conditions, commercial screens have been developed which sample a wide range of crystallization space. While this approach has proved successful in many cases, a significant number of proteins fail to crystallize despite being soluble and monodispersed. It is established that chemical modification can facilitate the crystallization of otherwise intractable proteins. Here we describe a method for the reductive methylation of lysine residues which is simple, inexpensive, and efficient, and report on its application to ten proteins. We describe the effect of methylation on the physico-chemical properties of these proteins, and show that it led to diffraction-quality crystals from four proteins and structures for three that had hitherto proved refractory to crystallization. The method is suited to both low- and high-throughput laboratories.


Nature Immunology | 2015

A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus

Wanwisa Dejnirattisai; Wiyada Wongwiwat; Sunpetchuda Supasa; Xiaokang Zhang; Xinghong Dai; Alexander Rouvinski; Amonrat Jumnainsong; Carolyn Edwards; Nguyen Than Ha Quyen; Thaneeya Duangchinda; Jonathan M. Grimes; Wen-Yang Tsai; Chih-Yun Lai; Wei-Kung Wang; Prida Malasit; Jeremy Farrar; Cameron P. Simmons; Z. Hong Zhou; Félix A. Rey; Juthathip Mongkolsapaya; Gavin R. Screaton

Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.


Acta Crystallographica Section D-biological Crystallography | 2005

A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization

Thomas S. Walter; Jonathan M. Diprose; C.J. Mayo; Christian Siebold; M.G. Pickford; Lester G. Carter; Geoffrey C. Sutton; Nick S. Berrow; James Brown; Ian Berry; Guillaume Stewart-Jones; Jonathan M. Grimes; David K. Stammers; Robert M. Esnouf; E.Y. Jones; Raymond J. Owens; David I. Stuart; Karl Harlos

Crystallization trials at the Division of Structural Biology in Oxford are now almost exclusively carried out using a high‐throughput workflow implemented in the Oxford Protein Production Facility. Initial crystallization screening is based on nanolitre‐scale sitting‐drop vapour‐diffusion experiments (typically 100 nl of protein plus 100 nl of reservoir solution per droplet) which use standard crystallization screening kits and 96‐well crystallization plates. For 294 K crystallization trials the barcoded crystallization plates are entered into an automated storage system with a fully integrated imaging system. These plates are imaged in accordance with a pre‐programmed schedule and the resulting digital data for each droplet are harvested into a laboratory information‐management system (LIMS), scored by crystal recognition software and displayed for user analysis via a web‐based interface. Currently, storage for trials at 277 K is not automated and for imaging the crystallization plates are fed by hand into an imaging system from which the data enter the LIMS. The workflow includes two procedures for nanolitre‐scale optimization of crystallization conditions: (i) a protocol for variation of pH, reservoir dilution and protein:reservoir ratio and (ii) an additive screen. Experience based on 592 crystallization projects is reported.


Annual Review of Biochemistry | 2012

Structure Unifies the Viral Universe

Nicola G. A. Abrescia; Dennis H. Bamford; Jonathan M. Grimes; David I. Stuart

Is it possible to meaningfully comprehend the diversity of the viral world? We propose that it is. This is based on the observation that, although there is immense genomic variation, every infective virion is restricted by strict constraints in structure space (i.e., there are a limited number of ways to fold a protein chain, and only a small subset of these have the potential to construct a virion, the hallmark of a virus). We have previously suggested the use of structure for the higher-order classification of viruses, where genomic similarities are no longer observable. Here, we summarize the arguments behind this proposal, describe the current status of structural work, highlighting its power to infer common ancestry, and discuss the limitations and obstacles ahead of us. We also reflect on the future opportunities for a more concerted effort to provide high-throughput methods to facilitate the large-scale sampling of the virosphere.

Collaboration


Dive into the Jonathan M. Grimes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Harlos

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Raymond J. Owens

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Geoff Sutton

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammad W. Bahar

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge