Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Kurie is active.

Publication


Featured researches published by Jonathan M. Kurie.


Cancer Research | 2004

Immortalization of Human Bronchial Epithelial Cells in the Absence of Viral Oncoproteins

Ruben D. Ramirez; Shelley Sheridan; Luc Girard; Mitsuo Sato; Young Hyo Kim; Jon Pollack; Michael Peyton; Ying Zou; Jonathan M. Kurie; J. Michael DiMaio; Sara Milchgrub; Alice L. Smith; Rhonda F. Souza; Laura K. Gilbey; Xi Zhang; Kenia Gandia; Melville B. Vaughan; Woodring E. Wright; Adi F. Gazdar; Jerry W. Shay; John D. Minna

By expressing two genes (hTERT and Cdk4), we have developed a method to reproducibly generate continuously replicating human bronchial epithelial cell (HBEC) lines that provide a novel resource to study the molecular pathogenesis of lung cancer and the differentiation of bronchial epithelial cells. Twelve human bronchial epithelial biopsy specimens obtained from persons with and without lung cancer were placed into short-term culture and serially transfected with retroviral constructs containing cyclin-dependent kinase (Cdk) 4 and human telomerase reverse transcriptase (hTERT), resulting in continuously growing cultures. The order of introduction of Cdk4 and hTERT did not appear to be important; however, transfection of either gene alone did not result in immortalization. Although they could be cloned, the immortalized bronchial cells did not form colonies in soft agar or tumors in nude mice. The immortalized HBECs have epithelial morphology; express epithelial markers cytokeratins 7, 14, 17, and 19, the stem cell marker p63, and high levels of p16INK4a; and have an intact p53 checkpoint pathway. Cytogenetic analysis and array comparative genomic hybridization profiling show immortalized HBECs to have duplication of parts of chromosomes 5 and 20. Microarray gene expression profiling demonstrates that the Cdk4/hTERT-immortalized bronchial cell lines clustered together and with nonimmortalized bronchial cells, distinct from lung cancer cell lines. We also immortalized several parental cultures with viral oncoproteins human papilloma virus type 16 E6/E7 with and without hTERT, and these cells exhibited loss of the p53 checkpoint and significantly different gene expression profiles compared with Cdk4/hTERT-immortalized HBECs. These HBEC lines are a valuable new tool for studying of the pathogenesis of lung cancer.


Genes & Development | 2009

Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression

Don L. Gibbons; Wei Lin; Chad J. Creighton; Zain H. Rizvi; Philip A. Gregory; Gregory J. Goodall; Nishan Thilaganathan; Liqin Du; Yiqun Zhang; Alexander Pertsemlidis; Jonathan M. Kurie

Metastatic disease is a primary cause of cancer-related death, and factors governing tumor cell metastasis have not been fully elucidated. Here, we address this question by using tumor cell lines derived from mice that develop metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. Despite having widespread somatic genetic alterations, the metastasis-prone tumor cells retained a marked plasticity. They transited reversibly between epithelial and mesenchymal states, forming highly polarized epithelial spheres in three-dimensional culture that underwent epithelial-to-mesenchymal transition (EMT) following treatment with transforming growth factor-beta or injection into syngeneic mice. This transition was entirely dependent on the microRNA (miR)-200 family, which decreased during EMT. Forced expression of miR-200 abrogated the capacity of these tumor cells to undergo EMT, invade, and metastasize, and conferred transcriptional features of metastasis-incompetent tumor cells. We conclude that tumor cell metastasis is regulated by miR-200 expression, which changes in response to contextual extracellular cues.


Journal of Clinical Oncology | 2000

Adenovirus-Mediated p53 Gene Transfer in Sequence With Cisplatin to Tumors of Patients With Non–Small-Cell Lung Cancer

John Nemunaitis; S. Swisher; T. Timmons; D. Connors; Michael J. Mack; L. Doerksen; David Weill; J. Wait; David D. Lawrence; Bonnie L. Kemp; Frank V. Fossella; Bonnie S. Glisson; Waun Ki Hong; Fadlo R. Khuri; Jonathan M. Kurie; J. Jack Lee; J. Lee; Dao M. Nguyen; Jonathan C. Nesbitt; Roman Perez-Soler; Katherine M. Pisters; Joe B. Putnam; William R. Richli; Dong M. Shin; Garrett L. Walsh; James Merritt; Jack A. Roth

PURPOSE To determine the safety and tolerability of adenovirus-mediated p53 (Adp53) gene transfer in sequence with cisplatin when given by intratumor injection in patients with non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients with advanced NSCLC and abnormal p53 function were enrolled onto cohorts receiving escalating dose levels of Adp53 (1 x 10(6) to 1 x 10(11) plaque-forming units [PFU]). Patients were administered intravenous cisplatin 80 mg/m(2) on day 1 and study vector on day 4 for a total of up to six courses (28 days per course). Apoptosis was determined by the terminal deoxynucleotidyl- transferase-dUTP nick-end labeling assay. Evidence of vector-specific sequences were determined using reverse-transcriptase polymerase chain reaction. Vector dissemination and biodistribution was monitored using a series of assays (cytopathic effects assay, Ad5 hexon enzyme-linked immunosorbent assay, vector-specific polymerase chain reaction assay, and antibody response assay). RESULTS Twenty-four patients (median age, 64 years) received a total of 83 intratumor injections with Adp53. The maximum dose administered was 1 x 10(11) PFU per dose. Transient fever related to Adp53 injection developed in eight of 24 patients. Seventeen patients achieved a best clinical response of stable disease, two patients achieved a partial response, four patients had progressive disease, and one patient was not assessable. A mean apoptotic index between baseline and follow-up measurements increased from 0.010 to 0.044 (P =.011). Intratumor transgene mRNA was identified in 43% of assessable patients. CONCLUSION Intratumoral injection with Adp53 in combination with cisplatin is well tolerated, and there is evidence of clinical activity.


Nature Communications | 2014

Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression

Limo Chen; Don L. Gibbons; Sangeeta Goswami; Maria Angelica Abdalla Cortez; Young Ho Ahn; Lauren Averett Byers; Xuejun Zhang; Xiaohui Yi; David Dwyer; Wei Lin; Lixia Diao; Jing Wang; Jonathon D. Roybal; Mayuri Patel; Christin Ungewiss; David H. Peng; Scott Antonia; Melanie Mediavilla-Varela; Gordon Robertson; Steve Jones; Milind Suraokar; James Welsh; Baruch Erez; Ignacio I. Wistuba; Lieping Chen; Di Peng; Shanshan Wang; Stephen E. Ullrich; John V. Heymach; Jonathan M. Kurie

Immunosuppression of tumor-infiltrating lymphocytes (TIL) is a common feature of advanced cancer, but its biological basis has remained obscure. We demonstrate here a molecular link between epithelial-to-mesenchymal transition (EMT) and CD8+ TIL immunosuppression, two key drivers of cancer progression. We show that microRNA-200 (miR-200), a cell-autonomous suppressor of EMT and metastasis, targets PD-L1. Moreover, ZEB1, an EMT activator and transcriptional repressor of miR-200, relieves miR-200 repression of PD-L1 on tumor cells, leading to CD8+ T cell immunosuppression and metastasis. These findings are supported by robust correlations between the EMT score, miR-200 levels and PD-L1 expression in multiple human lung cancer datasets. In addition to revealing a link between EMT and T cell dysfunction, these findings also show that ZEB1 promotes metastasis through a heretofore unappreciated cell non-autonomous mechanism, and suggest that subgroups of patients in whom malignant progression is driven by EMT activators may respond to treatment with PD-L1 antagonists.


Cancer Research | 2005

High expression of ErbB family members and their ligands in lung adenocarcinomas that are sensitive to inhibition of epidermal growth factor receptor

Nobukazu Fujimoto; Marie Wislez; Jie Zhang; Kentaro Iwanaga; Jennifer Dackor; Amy E. Hanna; Shailaja Kalyankrishna; Dianna D. Cody; Roger E. Price; Mitsuo Sato; Jerry W. Shay; John D. Minna; Michael Peyton; Ximing Tang; Erminia Massarelli; Roy S. Herbst; David W. Threadgill; Ignacio I. Wistuba; Jonathan M. Kurie

Recent findings in tumor biopsies from lung adenocarcinoma patients suggest that somatic mutations in the genes encoding epidermal growth factor receptor (EGFR) and Kirsten ras (KRAS) confer sensitivity and resistance, respectively, to EGFR inhibition. Here, we provide evidence that these genetic mutations are not sufficient to modulate the biological response of lung adenocarcinoma cells to EGFR inhibition. We found high expression of ErbB family members, ErbB ligands, or both in three models that were sensitive to EGFR inhibition, including alveolar epithelial neoplastic lesions in mice that develop lung adenocarcinoma by oncogenic KRAS, human lung adenocarcinoma cell lines, and tumor biopsies from lung adenocarcinoma patients. Thus, lung adenocarcinoma cells that depend on EGFR for survival constitutively activate the receptor through a combination of genetic mutations and overexpression of EGFR dimeric partners and their ligands.


Journal of Clinical Investigation | 2011

The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200–dependent pathway in mice

Yanan Yang; Young Ho Ahn; Don L. Gibbons; Yi Zang; Wei Lin; Nishan Thilaganathan; Cristina A. Alvarez; Daniel C. Moreira; Chad J. Creighton; Philip A. Gregory; Gregory J. Goodall; Jonathan M. Kurie

Epithelial tumor cells transit to a mesenchymal state in response to extracellular cues, in a process known as epithelial-to-mesenchymal transition (EMT). The precise nature of these cues has not been fully defined, an important issue given that EMT is an early event in tumor metastasis. Here, we have found that a population of metastasis-prone mouse lung adenocarcinoma cells expresses Notch and Notch ligands and that the Notch ligand Jagged2 promotes metastasis. Mechanistically, Jagged2 was found to promote metastasis by increasing the expression of GATA-binding (Gata) factors, which suppressed expression of the microRNA-200 (miR-200) family of microRNAs that target the transcriptional repressors that drive EMT and thereby induced EMT. Reciprocally, miR-200 inhibited expression of Gata3, which reversed EMT and abrogated metastasis, suggesting that Gata3 and miR-200 are mutually inhibitory and have opposing effects on EMT and metastasis. Consistent with this, high levels of Gata3 expression correlated with EMT in primary tumors from 2 cohorts of lung adenocarcinoma patients. These findings reveal what we believe to be a novel Jagged2/miR-200-dependent pathway that mediates lung adenocarcinoma EMT and metastasis in mice and may have implications for the treatment of human epithelial tumors.


Cancer Research | 2005

Inhibition of Mammalian Target of Rapamycin Reverses Alveolar Epithelial Neoplasia Induced by Oncogenic K-ras

Marie Wislez; M. Loreto Spencer; Julie Izzo; Denise M. Juroske; Kamna Balhara; Dianna D. Cody; Roger E. Price; Walter N. Hittelman; Ignacio I. Wistuba; Jonathan M. Kurie

The serine/threonine kinase AKT and its downstream mediator mammalian target of rapamycin (mTOR) are activated in lung adenocarcinoma, and clinical trials are under way to test whether inhibition of mTOR is useful in treating lung cancer. Here, we report that mTOR inhibition blocked malignant progression in K-ras(LA1) mice, which undergo somatic activation of the K-ras oncogene and display morphologic changes in alveolar epithelial cells that recapitulate those of precursors of human lung adenocarcinoma. Levels of phospho-S6(Ser236/235), a downstream mediator of mTOR, increased with malignant progression (normal alveolar epithelial cells to adenocarcinoma) in K-ras(LA1) mice and in patients with lung adenocarcinoma. Atypical alveolar hyperplasia, an early neoplastic change, was prominently associated with macrophages and expressed high levels of phospho-S6(Ser236/235). mTOR inhibition in K-ras(LA1) mice by treatment with the rapamycin analogue CCI-779 reduced the size and number of early epithelial neoplastic lesions (atypical alveolar hyperplasia and adenomas) and induced apoptosis of intraepithelial macrophages. LKR-13, a lung adenocarcinoma cell line derived from K-ras(LA1) mice, was resistant to treatment with CCI-779 in vitro. However, LKR-13 cells grown as syngeneic tumors recruited macrophages, and those tumors regressed in response to treatment with CCI-779. Lastly, conditioned medium from primary cultures of alveolar macrophages stimulated the proliferation of LKR-13 cells. These findings provide evidence that the expansion of lung adenocarcinoma precursors induced by oncogenic K-ras requires mTOR-dependent signaling and that host factors derived from macrophages play a critical role in adenocarcinoma progression.


Molecular Imaging | 2004

In Vivo Respiratory-Gated Micro-CT Imaging in Small-Animal Oncology Models

Dawn Cavanaugh; Evan M. Johnson; Roger E. Price; Jonathan M. Kurie; Elizabeth L. Travis; Dianna D. Cody

Micro-computed tomography(micro-CT) is becoming an accepted research tool for the noninvasive examination of laboratory animals such as mice and rats, but to date, in vivo scanning has largely been limited to the evaluation of skeletal tissues. We use a commercially available micro-CT device to perform respiratory gated in vivo acquisitions suitable for thoracic imaging. The instrument is described, along with the scan protocol and animal preparation techniques. Preliminary results confirm that lung tumors as small as 1 mm in diameter are visible in vivo with these methods. Radiation dose was evaluated using several approaches, and was found to be approximately 0.15 Gy for this respiratory-gated micro-CT imaging protocol. The combination of high-resolution CT imaging and respiratory-gated acquisitions appears well-suited to serial in vivo scanning.


Molecular Cancer Research | 2011

miR-200 Inhibits Lung Adenocarcinoma Cell Invasion and Metastasis by Targeting Flt1/VEGFR1

Jonathon D. Roybal; Yi Zang; Young Ho Ahn; Yanan Yang; Don L. Gibbons; Brandi N. Baird; Cristina A. Alvarez; Nishan Thilaganathan; Diane D. Liu; Pierre Saintigny; John V. Heymach; Chad J. Creighton; Jonathan M. Kurie

The microRNA-200 (miR-200) family is part of a gene expression signature that predicts poor prognosis in lung cancer patients. In a mouse model of K-ras/p53-mutant lung adenocarcinoma, miR-200 levels are suppressed in metastasis-prone tumor cells, and forced miR-200 expression inhibits tumor growth and metastasis, but the miR-200 target genes that drive lung tumorigenesis have not been fully elucidated. Here, we scanned the genome for putative miR-200 binding sites and found them in the 3′-untranslated region (3′-UTR) of 35 genes that are amplified in human cancer. Mining of a database of resected human lung adenocarcinomas revealed that the levels of one of these genes, Flt1/VEGFR1, correlate inversely with duration of survival. Forced miR-200 expression suppressed Flt1 levels in metastasis-prone lung adenocarcinoma cells derived from K-ras/p53-mutant mice, and negatively regulated the Flt1 3′-UTR in reporter assays. Cancer-associated fibroblasts (CAFs) isolated from murine lung adenocarcinomas secreted abundant VEGF and enhanced tumor cell invasion in coculture studies. CAF-induced tumor cell invasion was abrogated by VEGF neutralization or Flt1 knockdown in tumor cells. Flt1 knockdown decreased the growth and metastasis of tumor cells in syngeneic mice. We conclude that miR-200 suppresses lung tumorigenesis by targeting Flt1. Mol Cancer Res; 9(1); 25–35 ©2010 AACR.


Cancer Research | 2006

High Expression of Ligands for Chemokine Receptor CXCR2 in Alveolar Epithelial Neoplasia Induced by Oncogenic Kras

Marie Wislez; Nobukazu Fujimoto; Julie Izzo; Amy E. Hanna; Dianna D. Cody; Robert R. Langley; Hongli Tang; Marie D. Burdick; Mitsuo Sato; John D. Minna; Li Mao; Ignacio I. Wistuba; Robert M. Strieter; Jonathan M. Kurie

CXCL8, a ligand for the chemokine receptor CXCR2, was recently reported to be a transcriptional target of Ras signaling, but its role in Ras-induced tumorigenesis has not been fully defined. Here, we investigated the role of KC and MIP-2, the murine homologues of CXCL8, in Kras(LA1) mice, which develop lung adenocarcinoma owing to somatic activation of the KRAS oncogene. We first investigated biological evidence of CXCR2 ligands in Kras(LA1) mice. Malignant progression of normal alveolar epithelial cells to adenocarcinoma in Kras(LA1) mice was associated with enhanced intralesional vascularity and neutrophilic inflammation, which are hallmarks of chemoattraction by CXCR2 ligands. In in vitro migration assays, supernatants of bronchoalveolar lavage samples from Kras(LA1) mice chemoattracted murine endothelial cells, alveolar inflammatory cells, and the LKR-13 lung adenocarcinoma cell line derived from Kras(LA1) mice, an effect that was abrogated by pretreatment of the cells with a CXCR2-neutralizing antibody. CXCR2 and its ligands were highly expressed in LKR-13 cells and premalignant alveolar lesions in Kras(LA1) mice. Treatment of Kras(LA1) mice with a CXCR2-neutralizing antibody inhibited the progression of premalignant alveolar lesions and induced apoptosis of vascular endothelial cells within alveolar lesions. Whereas the proliferation of LKR-13 cells in vitro was resistant to treatment with the antibody, LKR-13 cells established as syngeneic tumors were sensitive, supporting a role for the tumor microenvironment in the activity of CXCR2. Thus, high expression of CXCR2 ligands may contribute to the expansion of early alveolar neoplastic lesions induced by oncogenic KRAS.

Collaboration


Dive into the Jonathan M. Kurie's collaboration.

Top Co-Authors

Avatar

Waun Ki Hong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ignacio I. Wistuba

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Don L. Gibbons

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

J. Jack Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad J. Creighton

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garrett L. Walsh

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Bonnie S. Glisson

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge