Jonathan M. Lee
University of Ottawa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan M. Lee.
Journal of Cell Biology | 2006
Jonathan M. Lee; Shoukat Dedhar; Raghu Kalluri; Erik W. Thompson
The conversion of an epithelial cell to a mesenchymal cell is critical to metazoan embryogenesis and a defining structural feature of organ development. Current interest in this process, which is described as an epithelial–mesenchymal transition (EMT), stems from its developmental importance and its involvement in several adult pathologies. Interest and research in EMT are currently at a high level, as seen by the attendance at the recent EMT meeting in Vancouver, Canada (October 1–3, 2005). The meeting, which was hosted by The EMT International Association, was the second international EMT meeting, the first being held in Port Douglas, Queensland, Australia in October 2003. The EMT International Association was formed in 2002 to provide an international body for those interested in EMT and the reverse process, mesenchymal–epithelial transition, and, most importantly, to bring together those working on EMT in development, cancer, fibrosis, and pathology. These themes continued during the recent meeting in Vancouver. Discussion at the Vancouver meeting spanned several areas of research, including signaling pathway activation of EMT and the transcription factors and gene targets involved. Also covered in detail was the basic cell biology of EMT and its role in cancer and fibrosis, as well as the identification of new markers to facilitate the observation of EMT in vivo. This is particularly important because the potential contribution of EMT during neoplasia is the subject of vigorous scientific debate (Tarin, D., E.W. Thompson, and D.F. Newgreen. 2005. Cancer Res. 65:5996–6000; Thompson, E.W., D.F. Newgreen, and D. Tarin. 2005. Cancer Res. 65:5991–5995).
Oncogene | 2007
Anahita Amiri; F Noei; Sujeeve Jeganathan; G Kulkarni; D E Pinke; Jonathan M. Lee
eEF1A2 (eukaryotic protein elongation factor 1 alpha 2) is a protein translation factor that is likely a human oncogene by virtue of its capacity to transform mammalian cells and its high expression in tumors of the ovary, breast and lung. Here, we show that expression of eEF1A2 is sufficient to stimulate the formation of filopodia in BT549 human breast cancer cells and non-transformed Rat2 cells. Filopodia formation in eEF1A2-expressing cells is dependent on the activity of phosphatidylinositol-3 kinase (PI3K), and the ROCK and Akt kinases. Furthermore, eEF1A2 expression is sufficient to activate Akt in a PI3K-dependent fashion and inactivation of eEF1A2 by short interfering RNA reduces Akt activity. Using breast cancer cell line BT 549, we show that eEF1A2 expression stimulates cell migration and invasion in a largely PI3K- and Akt-dependent manner. These results suggest that eEF1A2 regulates oncogenesis through Akt and PI3K-dependent cytoskeletal remodeling.
Gynecologic Oncology | 2008
Dixie E. Pinke; Steve E. Kalloger; Tanja Francetic; David Huntsman; Jonathan M. Lee
OBJECTIVE To determine whether eukaryotic elongation factor 1 alpha 2 (eEF1A2), a transforming gene previously shown to be highly expressed in primary human ovarian tumours, is a prognostic marker. METHODS We have used an antibody specific for eEF1A2 to measure eEF1A2 protein expression in 500 primary ovarian tumours in a tissue microarray. We have also ectopically expressed eEF1A2 in SK-OV-3 cells, a clear cell carcinoma line that does not normally express eEF1A2. RESULTS We have shown that eEF1A2 has high expression levels in approximately 30% of all primary ovarian tumours. 50% of serous tumours, 30% of endometrioid, 19% of mucinous and 8% of clear cell tumours highly express eEF1A2. Ectopic expression of eEF1A2 in the SK-OV-3 clear cell carcinoma line enhances their in vitro proliferative capacity and ability to form tumour-like spheroids in hanging drop culture. Expression of eEF1A2 did not alter sensitivity to anoikis, cisplatin, or taxol. In serous cancer, eEF1A2 is an independent prognostic marker for survival and high eEF1A2 protein expression was associated with increased probability of 20-year survival. CONCLUSIONS eEF1A2 is highly expressed in ovarian carcinomas. Its expression enhances cell growth in vitro, and eEF1A2 expression is likely to be a useful ovarian cancer prognostic factor in ovarian cancer patients with serous tumours.
PLOS ONE | 2012
Susan F. Thurston; Wojciech A. Kulacz; Sahir Shaikh; Jonathan M. Lee; John W. Copeland
Cytoplasmic microtubules exist as distinct dynamic and stable populations within the cell. Stable microtubules direct and maintain cell polarity and it is thought that their stabilization is dependent on coordinative organization between the microtubule network and the actin cytoskeleton. A growing body of work suggests that some members of the formin family of actin remodeling proteins also regulate microtubule organization and stability. For example, we showed previously that expression of the novel formin INF1 is sufficient to induce microtubule stabilization and tubulin acetylation, but not tubulin detyrosination. An important issue with respect to the relationship between formins and microtubules is the determination of which formin domains mediate microtubule stabilization. INF1 has a distinct microtubule-binding domain at its C-terminus and the endogenous INF1 protein is associated with the microtubule network. Surprisingly, the INF1 microtubule-binding domain is not essential for INF1-induced microtubule acetylation. We show here that expression of the isolated FH1 + FH2 functional unit of INF1 is sufficient to induce microtubule acetylation independent of the INF1 microtubule-binding domain. It is not yet clear whether or not microtubule stabilization is a general property of all mammalian formins; therefore we expressed constitutively active derivatives of thirteen of the fifteen mammalian formin proteins in HeLa and NIH3T3 cells and measured their effects on stress fiber formation, MT organization and MT acetylation. We found that expression of the FH1 + FH2 unit of the majority of mammalian formins is sufficient to induce microtubule acetylation. Our results suggest that the regulation of microtubule acetylation is likely a general formin activity and that the FH2 should be thought of as a dual-function domain capable of regulating both actin and microtubule networks.
Journal of Biological Chemistry | 2007
Sujeeve Jeganathan; Jonathan M. Lee
Eukaryotic protein translation elongation factor 1 α 2 (eEF1A2) is an oncogene that transforms mammalian cell lines and increases their tumorigenicity in nude mice. Increased expression of eEF1A2 occurs during the development of breast, ovarian, and lung cancer. Here, we report that eEF1A2 directly binds to and activates phosphatidylinositol 4-kinase III β (PI4KIIIβ), an enzyme that converts phosphatidylinositol to phosphatidylinositol 4-phosphate. Purified recombinant eEF1A2 increases PI4KIIIβ lipid kinase activity in vitro, and expression of eEF1A2 in rat and human cells is sufficient to increase overall cellular phosphatidylinositol 4-kinase activity and intracellular phosphatidylinositol 4-phosphate abundance. siRNA-mediated reduction in eEF1A2 expression concomitantly reduces phosphatidylinositol 4-kinase activity. This identifies a physical and functional relationship between eEF1A2 and PI4KIIIβ.
Molecular and Cellular Biology | 2008
Sujeeve Jeganathan; Anne Morrow; Anahita Amiri; Jonathan M. Lee
ABSTRACT Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a transforming gene product that is highly expressed in human tumors of the ovary, lung, and breast. eEF1A2 also stimulates actin remodeling, and the expression of this factor is sufficient to induce the formation of filopodia, long cellular processes composed of bundles of parallel actin filaments. Here, we find that eEF1A2 stimulates formation of filopodia by increasing the cellular abundance of cytosolic and plasma membrane-bound phosphatidylinositol-4,5 bisphosphate [PI(4,5)P2]. We have previously reported that the eEF1A2 protein binds and activates phosphatidylinositol-4 kinase III beta (PI4KIIIβ), and we find that production of eEF1A2-dependent PI(4,5)P2 and generation of filopodia require PI4KIIIβ. Furthermore, PI4KIIIβ is itself capable of activating both the production of PI(4,5)P2 and the creation of filopodia. We propose a model for extrusion of filopodia in which eEF1A2 activates PI4KIIIβ, and activated PI4KIIIβ stimulates production of PI(4,5)P2 and filopodia by increasing PI4P abundance. Our work suggests an important role for both eEF1A2 and PI4KIIIβ in the control of PI(4,5)P2 signaling and actin remodeling.
BMC Systems Biology | 2013
Sharmin Nilufar; Anne Morrow; Jonathan M. Lee; Theodore J. Perkins
BackgroundFilopodia are small cellular projections that help cells to move through and sense their environment. Filopodia play crucial roles in processes such as development and wound-healing. Also, increases in filopodia number or size are characteristic of many invasive cancers and are correlated with increased rates of metastasis in mouse experiments. Thus, one possible route to developing anti-metastatic therapies is to target factors that influence the filopodia system. Filopodia can be detected by eye using confocal fluorescence microscopy, and they can be manually annotated in images to quantify filopodia parameters. Although this approach is accurate, it is slow, tedious and not entirely objective. Manual detection is a significant barrier to the discovery and quantification of new factors that influence the filopodia system.ResultsHere, we present FiloDetect, an automated tool for detecting, counting and measuring the length of filopodia in fluorescence microscopy images. The method first segments the cell from the background, using a modified triangle threshold method, and then extracts the filopodia using a series of morphological operations. We verified the accuracy of FiloDetect on Rat2 and B16F1 cell images from three different labs, showing that per-cell filopodia counts and length estimates are highly correlated with the manual annotations. We then used FiloDetect to assess the role of a lipid kinase on filopodia production in breast cancer cells. Experimental results show that PI4KIII β expression leads to an increase in filopodia number and length, suggesting that PI4KIII β is involved in driving filopodia production.ConclusionFiloDetect provides accurate and objective quantification of filopodia in microscopy images, and will enable large scale comparative studies to assess the effects of different genetic and chemical perturbations on filopodia production in different cell types, including cancer cell lines.
Biochemical Journal | 2008
Hongyu Zhang; Jonathan M. Lee; Yuwei Wang; Li Dong; Kerry W. S. Ko; Louise Pelletier; Zemin Yao
LRP1 [LDL (low-density lipoprotein) receptor-related protein 1]-null CHO cells (Chinese-hamster ovary cells) (13-5-1 cells) exhibited accelerated cell growth and severe tumour progression after they were xenografted into nude mice. Reconstitution of LRP1 expression in these cells, either with the full-length protein or with a minireceptor, reduced growth rate as well as suppressed tumour development. We tested the role of the tyrosine residue in the FXNPXY63 motif within the LRP1 cytoplasmic domain in signal transduction and cell growth inhibition by site-specific mutagenesis. The LRP1 minireceptors harbouring Tyr63 to alanine or Tyr63 to phenylalanine substitution had diametrically opposite effects on cell growth, cell morphology and tumour development in mice. The Y63F-expressing cells showed suppressed cell growth and tumour development, which were associated with decreased beta-catenin and cadherin concentrations in the cells. On the other hand, the Y63A-expressing cells lacked inhibition on cell growth and tumour development, which were associated with hyperactivation of ERKs (extracellular-signal-regulated kinases), FAK (focal adhesion kinase) and cyclin D1 in the cells. The mutant Y63A minireceptor also exhibited reduced capacity in binding to the Dab2 (disabled 2) adaptor protein. In addition, the Y63A mutant showed increased caveolar localization, and cells expressing Y63A had altered caveolae architecture. However, tyrosine to alanine substitution at the other NPXY29 motif had no effect on cell growth or tumorigenesis. These results suggest that the FXNPXY63 motif of LRP1 not only governs cellular localization of the receptor but also exerts multiple functional effects on signalling pathways involved in cell growth regulation.
Molecular Cancer Research | 2007
Anahita Amiri; Farahnaz Noei; Tahir Feroz; Jonathan M. Lee
Heat shock protein 90 (Hsp90) is a member of the heat shock family of molecular chaperones that regulate protein conformation and activity. Hsp90 regulates multiple cell signaling pathways by controlling the abundance and activity of several important protein kinases and cell cycle–related proteins. In this report, we show that inhibition of Hsp90 by geldanamycin or its derivative, 17-allylamino-17-desmethoxygeldamycin, leads to activation of the Rho GTPase and a dramatic increase in actin stress fiber formation in human tumor cell lines. Inactivation of Rho prevents geldanamycin-induced actin reorganization. Hsp90 inactivation does not alter the appearance of filopodia or lamellipodia and tubulin architecture is not visibly perturbed. Our observations suggest that Hsp90 has an important and specific role in regulating Rho activity and Rho-dependent actin cytoskeleton remodeling. (Mol Cancer Res 2007;5(9):933–42)
Journal of Biological Chemistry | 2016
Claudine Beauchamp; Christiane Quinou; Jonathan M. Lee; Sylvie Lesage; Sylvain Chemtob; John D. Rioux; Stephen W. Michnick
Genome-wide association studies as well as murine models have shown that the interleukin 23 receptor (IL23R) pathway plays a pivotal role in chronic inflammatory diseases such as Crohn disease (CD), ulcerative colitis, psoriasis, and type 1 diabetes. Genome-wide association studies and targeted re-sequencing studies have revealed the presence of multiple potentially causal variants of the IL23R. Specifically the G149R, V362I, and R381Q IL23Rα chain variants are linked to protection against the development of Crohn disease and ulcerative colitis in humans. Moreover, the exact mechanism of action of these receptor variants has not been elucidated. We show that all three of these IL23Rα variants cause a reduction in IL23 receptor activation-mediated phosphorylation of the signal-transducing activator of transcription 3 (STAT3) and phosphorylation of signal transducing activator of transcription 4 (STAT4). The reduction in signaling is due to lower levels of cell surface receptor expression. For G149R, the receptor retention in the endoplasmic reticulum is due to an impairment of receptor maturation, whereas the R381Q and V362I variants have reduced protein stability. Finally, we demonstrate that the endogenous expression of IL23Rα protein from V362I and R381Q variants in human lymphoblastoid cell lines exhibited lower expression levels relative to susceptibility alleles. Our results suggest a convergent cause of IL23Rα variant protection against chronic inflammatory disease.