Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Schott is active.

Publication


Featured researches published by Jonathan M. Schott.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Mapping the evolution of regional atrophy in Alzheimer's disease: Unbiased analysis of fluid-registered serial MRI

Rachael I. Scahill; Jonathan M. Schott; John M. Stevens; Nick C. Fox

Alzheimers disease (AD) is characterized by progressive cerebral atrophy, which may be assessed by using volumetric MRI. We describe a voxel-based analysis of nonlinear-registered serial MRI to demonstrate the most statistically significant (P < 0.001) regions of change at different stages of the disease. We compared presymptomatic (n = 4), mild (n = 10), and moderately affected (n = 12) patients with early- and late-onset AD, with age- and sex-matched controls, and demonstrated increasing global atrophy with advancing disease. Significantly increased rates of hippocampal atrophy were seen in presymptomatic and mildly affected patients. There was a shift in the distribution of temporal lobe atrophy with advancing disease; the inferolateral regions of the temporal lobes showed the most significantly increased rates of atrophy by the time the patients were mildly or moderately affected. Significantly increased rates of medial parietal lobe atrophy were seen at all stages, with frontal lobe involvement occurring later in the disease. Our results suggest that the sites showing the most significant rates of atrophy alter as the disease advances, and that regional atrophy is already occurring before the onset of symptoms. This technique provides insights into the natural history of AD, and may be a valuable tool in assessing the efficacy of disease-modifying treatments, especially if these treatments were to have region-specific effects.


Annals of Neurology | 2011

Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis.

Sarosh R. Irani; Andrew W. Michell; Bethan Lang; Patrick Waters; Michael R. Johnson; Jonathan M. Schott; Richard J. E. Armstrong; Alessandro S. Zagami; Andrew Bleasel; Ernest Somerville; Shelagh M. J. Smith; Angela Vincent

To describe a distinctive seizure semiology that closely associates with voltage‐gated potassium channel (VGKC)‐complex/Lgi1 antibodies and commonly precedes the onset of limbic encephalitis (LE).


Brain | 2012

Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features

Colin J. Mahoney; Jon Beck; Jonathan D. Rohrer; Tammaryn Lashley; Kin Mok; Tim Shakespeare; Tom Yeatman; Elizabeth K. Warrington; Jonathan M. Schott; Nick C. Fox; John Hardy; John Collinge; Tamas Revesz; Simon Mead; Jason D. Warren

An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43–68 years) and duration (1.7–22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases with C9ORF72 mutation from the frontotemporal lobar degeneration series identified histomorphological features consistent with either type A or B TAR DNA-binding protein-43 deposition; however, p62-positive (in excess of TAR DNA-binding protein-43 positive) neuronal cytoplasmic inclusions in hippocampus and cerebellum were a consistent feature of these cases, in contrast to the similar frequency of p62 and TAR DNA-binding protein-43 deposition in 53 control cases with frontotemporal lobar degeneration–TAR DNA-binding protein. These findings corroborate the clinical importance of the C9ORF72 mutation in frontotemporal lobar degeneration, delineate phenotypic and neuropathological features that could help to guide genetic testing, and suggest hypotheses for elucidating the neurobiology of a culprit subcortical network.


The Lancet | 2004

Imaging cerebral atrophy: normal ageing to Alzheimer's disease

Nick C. Fox; Jonathan M. Schott

CONTEXT With ageing populations, the prevalence of dementia, especially Alzheimers disease, is set to soar. Alzheimers disease is associated with progressive cerebral atrophy, which can be seen on MRI with high resolution. Longitudinal MRI could track disease progression and detect neurodegenerative diseases earlier to allow prompt and specific treatment. Such use of MRI requires accurate understanding of how brain changes in normal ageing differ from those in dementia. STARTING POINT Recently, Henry Rusinek and colleagues, in a 6-year longitudinal MRI study of initially healthy elderly subjects, showed that an increased rate of atrophy in the medial temporal lobe predicted future cognitive decline with a specificity of 91% and sensitivity of 89% (Radiology 2003; 229: 691-96). WHERE NEXT? As understanding of neurodegenerative diseases increases, specific disease-modifying treatments might become available. Serial MRI could help to determine the efficacy of such treatments, which would be expected to slow the rate of atrophy towards that of normal ageing, and might also detect the onset of neurodegeneration. The amount and pattern of excess atrophy might help to predict the underlying pathological process, allowing specific therapies to be started. As the precision of imaging improves, the ability to distinguish healthy ageing from degenerative dementia should improve.


Lancet Neurology | 2012

Posterior cortical atrophy

Sebastian J. Crutch; Manja Lehmann; Jonathan M. Schott; Gil D. Rabinovici; Nick C. Fox

Posterior cortical atrophy (PCA) is a neurodegenerative syndrome that is characterised by progressive decline in visuospatial, visuoperceptual, literacy, and praxic skills. The progressive neurodegeneration affecting parietal, occipital, and occipitotemporal cortices that underlies PCA is attributable to Alzheimers disease in most patients. However, alternative underlying causes, including dementia with Lewy bodies, corticobasal degeneration, and prion disease, have also been identified, and not all patients with PCA have atrophy on clinical imaging. This heterogeneity has led to inconsistencies in diagnosis and terminology and difficulties in comparing studies from different centres, and has restricted the generalisability of findings from clinical trials and investigations of factors that drive phenotypic variability. Important challenges remain, including the identification of factors associated not only with the selective vulnerability of posterior cortical regions but also with the young age of onset of PCA. Greater awareness of the syndrome and agreement over the correspondence between syndrome-level and disease-level classifications are needed to improve diagnostic accuracy, clinical management, and the design of research studies.


Lancet Neurology | 2006

Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism

Anette Schrag; Jonathan M. Schott

In this review we discuss the epidemiological, clinical, and genetic characteristics of early-onset parkinsonism, defined as parkinsonism starting before age 40 (sometimes 50) years. Juvenile parkinsonism is very rare and is the result of various secondary or genetic causes. In patients with onset at or above age 21 years, secondary causes require exclusion but are rare; most cases with a fairly pure parkinsonian syndrome (eg, young-onset Parkinsons disease; YOPD) are due to typical Lewy-body Parkinsons disease or, less commonly, genetic causes. In comparison with patients with late-onset disease, most patients with YOPD progress more slowly in terms of motor features and have a longer disease course with preservation of cognitive function, but typically develop motor fluctuations and dyskinesias earlier. Patients with YOPD generally experience a greater effect in their lives than those with late onset, with poorer social adjustment, higher rates of depression, and lower quality of life. Management of YOPD must therefore aim to maintain occupational, social, and daily functioning, while delaying or ameliorating motor complications of treatment, providing psychological support, and, where possible, preventing psychiatric complications including depression.


American Journal of Human Genetics | 2013

Large C9orf72 Hexanucleotide Repeat Expansions Are Seen in Multiple Neurodegenerative Syndromes and Are More Frequent Than Expected in the UK Population

Jon Beck; Mark Poulter; Davina Hensman; Jonathan D. Rohrer; Colin J. Mahoney; Gary Adamson; Tracy Campbell; James Uphill; Aaron Borg; Pietro Fratta; Richard W. Orrell; Andrea Malaspina; James B. Rowe; Jeremy M Brown; John R. Hodges; Katie Sidle; James M. Polke; Henry Houlden; Jonathan M. Schott; Nick C. Fox; Sarah J. Tabrizi; Adrian M. Isaacs; John Hardy; Jason D. Warren; John Collinge; Simon Mead

Hexanucleotide repeat expansions in C9orf72 are a major cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Understanding the disease mechanisms and a method for clinical diagnostic genotyping have been hindered because of the difficulty in estimating the expansion size. We found 96 repeat-primed PCR expansions: 85/2,974 in six neurodegenerative diseases cohorts (FTLD, ALS, Alzheimer disease, sporadic Creutzfeldt-Jakob disease, Huntington disease-like syndrome, and other nonspecific neurodegenerative disease syndromes) and 11/7,579 (0.15%) in UK 1958 birth cohort (58BC) controls. With the use of a modified Southern blot method, the estimated expansion range (smear maxima) in cases was 800-4,400. Similarly, large expansions were detected in the population controls. Differences in expansion size and morphology were detected between DNA samples from tissue and cell lines. Of those in whom repeat-primed PCR detected expansions, 68/69 were confirmed by blotting, which was specific for greater than 275 repeats. We found that morphology in the expansion smear varied among different individuals and among different brain regions in the same individual. Expansion size correlated with age at clinical onset but did not differ between diagnostic groups. Evidence of instability of repeat size in control families, as well as neighboring SNP and microsatellite analyses, support multiple expansion events on the same haplotype background. Our method of estimating the size of large expansions has potential clinical utility. C9orf72-related disease might mimic several neurodegenerative disorders and, with potentially 90,000 carriers in the United Kingdom, is more common than previously realized.


Lancet Neurology | 2010

The diagnosis of young-onset dementia

Nick C. Fox; Catherine J. Mummery; Jonathan M. Schott; Jason D. Warren

A diagnosis of dementia is devastating at any age but diagnosis in younger patients presents a particular challenge. The differential diagnosis is broad as late presentation of metabolic disease is common and the burden of inherited dementia is higher in these patients than in patients with late-onset dementia. The presentation of the common degenerative diseases of late life, such as Alzheimers disease, can be different when presenting in the fifth or sixth decade. Moreover, many of the young-onset dementias are treatable. The identification of causative genes for many of the inherited degenerative dementias has led to an understanding of the molecular pathology, which is also applicable to later-onset sporadic disease. This understanding offers the potential for future treatments to be tailored to a specific diagnosis of both young-onset and late-onset dementia.


Brain | 2011

Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration

Jonathan D. Rohrer; Tammaryn Lashley; Jonathan M. Schott; Jane E. Warren; Simon Mead; Adrian M. Isaacs; Jonathan Beck; John Hardy; Rohan de Silva; Elizabeth K. Warrington; Claire Troakes; Safa Al-Sarraj; Andrew King; Barbara Borroni; Matthew J. Clarkson; Sebastien Ourselin; Janice L. Holton; Nick C. Fox; Tamas Revesz; Jason D. Warren

Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Picks disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Picks disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors.


Brain | 2013

Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype.

Sarosh R. Irani; Charlotte J. Stagg; Jonathan M. Schott; Clive R. Rosenthal; Susanne A. Schneider; Rosemary Pettingill; P Waters; Adam G. Thomas; Natalie L. Voets; Manuel Jorge Cardoso; David M. Cash; Emily N. Manning; Bethan Lang; Shelagh Smith; Angela Vincent; Michael R. Johnson

Voltage-gated potassium channel complex antibodies, particularly those directed against leucine-rich glioma inactivated 1, are associated with a common form of limbic encephalitis that presents with cognitive impairment and seizures. Faciobrachial dystonic seizures have recently been reported as immunotherapy-responsive, brief, frequent events that often predate the cognitive impairment associated with this limbic encephalitis. However, these observations were made from a retrospective study without serial cognitive assessments. Here, we undertook the first prospective study of faciobrachial dystonic seizures with serial assessments of seizure frequencies, cognition and antibodies in 10 cases identified over 20 months. We hypothesized that (i) faciobrachial dystonic seizures would show a differential response to anti-epileptic drugs and immunotherapy; and that (ii) effective treatment of faciobrachial dystonic seizures would accelerate recovery and prevent the development of cognitive impairment. The 10 cases expand both the known age at onset (28 to 92 years, median 68) and clinical features, with events of longer duration, simultaneously bilateral events, prominent automatisms, sensory aura, and post-ictal fear and speech arrest. Ictal epileptiform electroencephalographic changes were present in three cases. All 10 cases were positive for voltage-gated potassium channel-complex antibodies (346-4515 pM): nine showed specificity for leucine-rich glioma inactivated 1. Seven cases had normal clinical magnetic resonance imaging, and the cerebrospinal fluid examination was unremarkable in all seven tested. Faciobrachial dystonic seizures were controlled more effectively with immunotherapy than anti-epileptic drugs (P = 0.006). Strikingly, in the nine cases who remained anti-epileptic drug refractory for a median of 30 days (range 11-200), the addition of corticosteroids was associated with cessation of faciobrachial dystonic seizures within 1 week in three and within 2 months in six cases. Voltage-gated potassium channel-complex antibodies persisted in the four cases with relapses of faciobrachial dystonic seizures during corticosteroid withdrawal. Time to recovery of baseline function was positively correlated with time to immunotherapy (r = 0.74; P = 0.03) but not time to anti-epileptic drug administration (r = 0.55; P = 0.10). Of 10 cases, the eight cases who received anti-epileptic drugs (n = 3) or no treatment (n = 5) all developed cognitive impairment. By contrast, the two who did not develop cognitive impairment received immunotherapy to treat their faciobrachial dystonic seizures (P = 0.02). In eight cases without clinical magnetic resonance imaging evidence of hippocampal signal change, cross-sectional volumetric magnetic resonance imaging post-recovery, after accounting for age and head size, revealed cases (n = 8) had smaller brain volumes than healthy controls (n = 13) (P < 0.001). In conclusion, faciobrachial dystonic seizures can be prospectively identified as a form of epilepsy with an expanding phenotype. Immunotherapy is associated with excellent control of the frequently anti-epileptic drug refractory seizures, hastens time to recovery, and may prevent the subsequent development of cognitive impairment observed in this study.

Collaboration


Dive into the Jonathan M. Schott's collaboration.

Top Co-Authors

Avatar

Nick C. Fox

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Jason D. Warren

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross W. Paterson

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine J. Mummery

Cognition and Brain Sciences Unit

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge