Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Wilson is active.

Publication


Featured researches published by Jonathan M. Wilson.


Journal of Clinical Investigation | 2012

Circulating αKlotho influences phosphate handling by controlling FGF23 production

Rosamund C. Smith; Linda M. O’Bryan; Emily G. Farrow; Lelia J. Summers; Erica L. Clinkenbeard; Jessica L. Roberts; Taryn A. Cass; Joy K. Saha; Carol L. Broderick; Y. Linda Ma; Qing Qiang Zeng; Alexei Kharitonenkov; Jonathan M. Wilson; Qianxu Guo; Haijun Sun; Matthew R. Allen; David B. Burr; Matthew D. Breyer; Kenneth E. White

The FGF23 coreceptor αKlotho (αKL) is expressed as a membrane-bound protein (mKL) that forms heteromeric complexes with FGF receptors (FGFRs) to initiate intracellular signaling. It also circulates as an endoproteolytic cleavage product of mKL (cKL). Previously, a patient with increased plasma cKL as the result of a translocation [t(9;13)] in the αKLOTHO (KL) gene presented with rickets and a complex endocrine profile, including paradoxically elevated plasma FGF23, despite hypophosphatemia. The goal of this study was to test whether cKL regulates phosphate handling through control of FGF23 expression. To increase cKL levels, mice were treated with an adeno-associated virus producing cKL. The treated groups exhibited dose-dependent hypophosphatemia and hypocalcemia, with markedly elevated FGF23 (38 to 456 fold). The animals also manifested fractures, reduced bone mineral content, expanded growth plates, and severe osteomalacia, with highly increased bone Fgf23 mRNA (>150 fold). cKL activity in vitro was specific for interactions with FGF23 and was FGFR dependent. These results demonstrate that cKL potently stimulates FGF23 production in vivo, which phenocopies the KL translocation patient and metabolic bone syndromes associated with elevated FGF23. These findings have important implications for the regulation of αKL and FGF23 in disorders of phosphate handling and biomineralization.


Journal of Pharmacology and Experimental Therapeutics | 2014

Follistatin: a novel therapeutic for the improvement of muscle regeneration

Benjamin C. Yaden; Johnny E. Croy; Yan Wang; Jonathan M. Wilson; Amita Datta-Mannan; Pamela K. Shetler; Andrea Milner; Henry U. Bryant; Jessica L. Andrews; Guoli Dai; Venkatesh Krishnan

Follistatin (FST) is a member of the tissue growth factor β family and is a secreted glycoprotein that antagonizes many members of the family, including activin A, growth differentiation factor 11, and myostatin. The objective of this study was to explore the use of an engineered follistatin therapeutic created by fusing FST315 lacking heparin binding activity to the N terminus of a murine IgG1 Fc (FST315-ΔHBS-Fc) as a systemic therapeutic agent in models of muscle injury. Systemic administration of this molecule was found to increase body weight and lean muscle mass after weekly administration in normal mice. Subsequently, we tested this agent in several models of muscle injury, which were chosen based on their severity of damage and their ability to reflect clinical settings. FST315-ΔHBS-Fc treatment proved to be a potent inducer of muscle remodeling and regeneration. FST315-ΔHBS-Fc induced improvements in muscle repair after injury/atrophy by modulating the early inflammatory phase allowing for increased macrophage density, and Pax7-positive cells leading to an accelerated restoration of myofibers and muscle function. Collectively, these data demonstrate the benefits of a therapeutically viable form of FST that can be leveraged as an alternate means of ameliorating muscle regeneration.


American Journal of Pathology | 2014

Inhibition of Activin A Ameliorates Skeletal Muscle Injury and Rescues Contractile Properties by Inducing Efficient Remodeling in Female Mice

Benjamin C. Yaden; Yan X. Wang; Jonathan M. Wilson; Alexander E. Culver; Andrea Milner; Amita Datta-Mannan; Pamela K. Shetler; Johnny E. Croy; Guoli Dai; Venkatesh Krishnan

Activin A, a member of the transforming growth factor-β superfamily, provides pleiotropic regulation of fibrosis and inflammation. We aimed at determining whether selective inhibition of activin A would provide a regenerative benefit. The introduction of activin A into normal muscle increased the expression of inflammatory and muscle atrophy genes Tnf, Tnfrsf12a, Trim63, and Fbxo32 by 3.5-, 10-, 2-, and 4-fold, respectively. The data indicate a sensitive response of muscle to activin A. Two hours after cardiotoxin-induced muscle damage, local activin A protein expression increased by threefold to ninefold. Neutralization of activin A with a specific monoclonal antibody in this muscle injury model decreased the muscle protein levels of lymphotoxin α and Il17a by 32% and 42%, respectively. Muscle histopathological features showed that activin A antibody-treated mice displayed an increase in muscle degradation, with the concomitant 9.2-fold elevation in F4/80-positive cells 3 days after injury. At the same time, the number of Pax7/Myod1-positive cells also increased, indicative of potentiated muscle precursor activation. Ultimately, activin A inhibition resulted in rapid recovery of muscle contractile properties indicated by a restoration of maximum and specific force. In summary, selective inhibition of activin A with a monoclonal antibody in muscle injury leads to the early onset of tissue degradation and subsequent enhanced myogenesis, thereby accelerating muscle repair and functional recovery.


Journal of The American Society of Nephrology | 2017

Chronic Hyperphosphatemia and Vascular Calcification Are Reduced by Stable Delivery of Soluble Klotho

Julia M. Hum; Linda Maureen O'Bryan; Arun K. Tatiparthi; Taryn A. Cass; Erica L. Clinkenbeard; Martin S. Cramer; Manoj Bhaskaran; Robert L. Johnson; Jonathan M. Wilson; Rosamund C. Smith; Kenneth E. White

αKlotho (αKL) regulates mineral metabolism, and diseases associated with αKL deficiency are characterized by hyperphosphatemia and vascular calcification (VC). αKL is expressed as a membrane-bound protein (mKL) and recognized as the coreceptor for fibroblast growth factor-23 (FGF23) and a circulating soluble form (cKL) created by endoproteolytic cleavage of mKL. The functions of cKL with regard to phosphate metabolism are unclear. We tested the ability of cKL to regulate pathways and phenotypes associated with hyperphosphatemia in a mouse model of CKD-mineral bone disorder and αKL-null mice. Stable delivery of adeno-associated virus (AAV) expressing cKL to diabetic endothelial nitric oxide synthase-deficient mice or αKL-null mice reduced serum phosphate levels. Acute injection of recombinant cKL downregulated the renal sodium-phosphate cotransporter Npt2a in αKL-null mice supporting direct actions of cKL in the absence of mKL. αKL-null mice with sustained AAV-cKL expression had a 74%-78% reduction in aorta mineral content and a 72%-77% reduction in mineral volume compared with control-treated counterparts (P<0.01). Treatment of UMR-106 osteoblastic cells with cKL + FGF23 increased the phosphorylation of extracellular signal-regulated kinase 1/2 and induced Fgf23 expression. CRISPR/Cas9-mediated deletion of fibroblast growth factor receptor 1 (FGFR1) or pretreatment with inhibitors of mitogen-activated kinase kinase 1 or FGFR ablated these responses. In summary, sustained cKL treatment reduced hyperphosphatemia in a mouse model of CKD-mineral bone disorder, and it reduced hyperphosphatemia and prevented VC in mice without endogenous αKL. Furthermore, cKL stimulated Fgf23 in an FGFR1-dependent manner in bone cells. Collectively, these findings indicate that cKL has mKL-independent activity and suggest the potential for enhancing cKL activity in diseases of hyperphosphatemia with associated VC.


Gene Expression Patterns | 2010

RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis

Jonathan M. Wilson; Reyna I. Martinez-De Luna; Heithem M. El Hodiri; Rosamund Smith; Michael W. King; Anthony L. Mescher; Anton W. Neff; Teri L. Belecky-Adams

Ddx39, a DEAD-box RNA helicase, is a part of the homeostatic machinery that regulates the switch between cellular proliferation and differentiation. Ddx39 was shown to be differentially regulated in Xenopus laevis using a differential screen of mRNAs from regenerating limbs (King et al., 2003). Here, the expression patterns of Ddx39 in developing limb and nervous system are reported. Ddx39 was detected by RT-PCR in the Xenopus embryo, the earliest stage examined. Localization of the message by whole-mount in situ hybridization at stage 17 showed it to be localized primarily to the developing nervous system. Ddx39 was present in the ventricular region of the developing neural tube up to and including stage 48, and was also localized to the head mesenchyme, pharyngeal arches, and paraxial mesoderm. Strong label was also present in the developing limb buds at stages 48-55. Analysis of expression patterns in cryosections of the developing eye at stage 38 and 47 showed Ddx39 in the ciliary marginal zone (CMZ) adjacent to the neural retina and within the lens epithelium. Ddx39 was also present in the anterior eye during fibroblast growth factor 2 (FGF2)-mediated retinal regeneration. BrDU incorporation analyses and double-label studies with proliferating cell nuclear antigen showed that Ddx39 message was restricted to a subpopulation of proliferating cells in the developing and regenerating optic cup.


Experimental Neurology | 2015

Increased brain bio-distribution and chemical stability and decreased immunogenicity of an engineered variant of GDNF.

Rosamund C. Smith; Linda Maureen O'Bryan; Pamela Jean Mitchell; Donmienne Doen Mun Leung; Mahmoud Ghanem; Jonathan M. Wilson; Jeffrey C. Hanson; Sandra Sossick; Jane Cooper; Lihua Huang; Kalpana M. Merchant; Jirong Lu; Michael J. O'Neill

Several lines of evidence indicate that Glial cell line-derived neurotrophic factor (GDNF) is a trophic factor for dopaminergic neurons. Direct parenchymal administration of GDNF is robustly neuroprotective and neurorestorative in multiple neurotoxin-based animal models (rat and non-human primate (NHP)) of Parkinsons Disease (PD), suggesting its potential as a therapeutic agent. Although small, open-label clinical trials of intra-putamenal administration of bacteria-derived, full length, wild type GDNF (GDNFwt) were efficacious in improving standardized behavioral scores, a double-blinded, randomized controlled trial failed to do so. We hypothesize that the lack of clinical efficacy of GDNFwt in the larger randomized trial was due to poor bio-distribution in the putamen and/or poor chemical stability while in the delivery device for prolonged time periods at 37°C. The development of neutralizing antibodies in some patients may also have been a contributing factor. GDNFv is an engineered form of GDNFwt, expressed and purified from mammalian cells, designed to overcome these limitations, including removal of the N-terminal heparin-binding domain to improve its diffusivity in brain parenchyma by reducing its binding to extracellular matrix (ECM), and key amino acid substitutions to improve chemical stability. Intra-striatal administration of a single injection of GDNFv in the rat produced significantly greater brain distribution than GDNFwt, consistent with reduced binding to ECM. Using liquid chromatography/mass spectrometry (LS/MS) methods GDNFv was shown to have improved chemical stability compared to GDNFwt when stored at 37°C for 4weeks. In addition, GDNFv resulted in lower predicted clinical immunogenicity compared to GDNFwt, as demonstrated by reduced CD4+ T cell proliferation and reduced IL-2-induced secretion in peripheral blood mononucleated cells collected from volunteers representing the worlds major histocompatibility complex (MHC) haplotypes. GDNFv was demonstrated to be pharmacologically equivalent to GDNFwt in the key parameters in vitro of GFRα1 receptor binding, c-Ret phosphorylation, neurite outgrowth, and in vivo in its ability to increase dopamine turnover (DA). GDNFv protected dopamine nerve terminals and neurons in a 6-hydroxy-dopamine (6-OHDA) rat model. In summary, we empirically demonstrate the superior properties of GDNFv compared to GDNFwt through enhanced bio-distribution and chemical stability concurrently with decreased predicted clinical immunogenicity while maintaining pharmacological and neurotrophic activity. These data indicate that GDNFv is an improved version of GDNF suitable for clinical assessment as a targeted regenerative therapy for PD.


Archive | 2013

Reactive Muller Glia as Potential Retinal Progenitors

Teri L. Belecky-Adams; Ellen C. Chernoff; Jonathan M. Wilson; Subramanian Dharmarajan

Regenerative medicine has become a driving force in the treatment of disease and injury over the last decade [1]. This is due to the accumulation of knowledge in several key areas; 1) the mechanisms of disease processes, 2) creation of stem cells/induced pluripotent stem cells that might be used for therapeutic purposes, and 3) factors that are necessary for the proper differentiation of specific cell types. In any tissue, it might be possible to regenerate lost cells from exogenous stem cells, endogenous stem or progenitor cells, or endogenous cells that can dedifferentiate, proliferate and re-differentiate. Several endogenous populations of cells localized to the eye have been shown to be capable of replacing some or all retinal cell types in various species; 1) an endogenous population of progenitor cells in the periphery of the eye referred to as the ciliary marginal zone (CMZ), 2) the retinal pigmented epithelium, 3) nonpigmented cells adjacent to peripheral retina, 4) NG2+ glial progenitors of the optic nerve, and finally 5) Müller glia of the retina [2]. This chapter will focus specifically on the responsiveness of Müller glia to disease or injury to the retina with a special emphasis on signals that have been shown to lead to the injury response and changes to the extracellular matrix that play a role in dedifferentiation and proliferation.


Animal Models in Eye Research | 2008

The Chick as a Model for Retina Development and Regeneration

Teri L. Belecky-Adams; Tracy Haynes; Jonathan M. Wilson; Katia Del Rio-Tsonis

Publisher Summary The chick provides an excellent system to explore cell and molecular events during retina development and regeneration. Chick embryos are wonderful to work with in a variety of aspects. The retina can regenerate during early development. The embryonic chick can regenerate its retina via two modes. One requires the activation of stem/progenitor cells present in the ciliary margin, while the other involves the use of the classic process of transdifferentiation. One of the great advantages of working with the embryonic chick eye is that the retina can be repaired or replaced if damaged or removed. The accessibility of the embryo for microsurgery combined with the availability of molecular tools in the chick has made this a great system to study and dissect the early molecular events that take place during retina regeneration. The chick genome was also recently sequenced, and this provides a vast range of possibilities to study the early stages of retina regeneration, including the use of gene array technology to identify critical genes regulated during chick retina regeneration.


American Journal of Physiology-renal Physiology | 2017

Role of TGF-alpha in the Progression of Diabetic Kidney Disease

Josef G. Heuer; Shannon M. Harlan; Derek D. Yang; Dianna L. Jaqua; Jeffrey S. Boyles; Jonathan M. Wilson; Kathleen M. Heinz-Taheny; John M. Sullivan; Tao Wei; Hui-Rong Qian; Derrick Ryan Witcher; Matthew D. Breyer

Transforming growth factor-alpha (TGFA) has been shown to play a role in experimental chronic kidney disease associated with nephron reduction, while its role in diabetic kidney disease (DKD) is unknown. We show here that intrarenal TGFA mRNA expression, as well as urine and serum TGFA, are increased in human DKD. We used a TGFA neutralizing antibody to determine the role of TGFA in two models of renal disease, the remnant surgical reduction model and the uninephrectomized (uniNx) db/db DKD model. In addition, the contribution of TGFA to DKD progression was examined using an adeno-associated virus approach to increase circulating TGFA in experimental DKD. In vivo blockade of TGFA attenuated kidney disease progression in both nondiabetic 129S6 nephron reduction and Type 2 diabetic uniNx db/db models, whereas overexpression of TGFA in uniNx db/db model accelerated renal disease. Therapeutic activity of the TGFA antibody was enhanced with renin angiotensin system inhibition with further improvement in renal parameters. These findings suggest a pathologic contribution of TGFA in DKD and support the possibility that therapeutic administration of neutralizing antibodies could provide a novel treatment for the disease.


Neuropharmacology | 2015

Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum

Jonathan M. Wilson; Ann Marie L. Ogden; Sally Loomis; Gary Gilmour; Anthony J. Baucum; Teri L. Belecky-Adams; Kalpana M. Merchant

Collaboration


Dive into the Jonathan M. Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge