Jonathan Margolis
Exelixis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Margolis.
Nature | 2006
Jörg Kämper; Regine Kahmann; Michael Bölker; Li-Jun Ma; Thomas Brefort; Barry J. Saville; Flora Banuett; James W. Kronstad; Scott E. Gold; Olaf Müller; Michael H. Perlin; Han A. B. Wösten; Ronald P. de Vries; José Ruiz-Herrera; Cristina G. Reynaga-Peña; Karen M. Snetselaar; Michael McCann; José Pérez-Martín; Michael Feldbrügge; Christoph W. Basse; Gero Steinberg; Jose I. Ibeas; William Holloman; Plinio Guzman; Mark L. Farman; Jason E. Stajich; Rafael Sentandreu; Juan M. González-Prieto; John C. Kennell; Lázaro Molina
Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant–microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no ‘true’ virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.
Nature Genetics | 2004
Stephen Thibault; Matthew A Singer; Wesley Y Miyazaki; Brett Milash; Nicholas Dompe; Carol M. Singh; Ross Buchholz; Madelyn Robin Demsky; Robert Fawcett; Helen Francis-Lang; Lisa Ryner; Lai Man Cheung; Angela Chong; Cathy Erickson; William W Fisher; Kimberly Greer; Stephanie R Hartouni; Elizabeth Howie; Lakshmi Jakkula; Daniel Joo; Keith Killpack; Alex Laufer; Julie Mazzotta; Ronald D. Smith; Lynn M Stevens; Christiana Stuber; Lory R Tan; Richard Ventura; Alesa Woo; Irena Zakrajsek
With the availability of complete genome sequence for Drosophila melanogaster, one of the next strategic goals for fly researchers is a complete gene knockout collection. The P-element transposon, the workhorse of D. melanogaster molecular genetics, has a pronounced nonrandom insertion spectrum. It has been estimated that 87% saturation of the ∼13,500-gene complement of D. melanogaster might require generating and analyzing up to 150,000 insertions. We describe specific improvements to the lepidopteran transposon piggyBac and the P element that enabled us to tag and disrupt genes in D. melanogaster more efficiently. We generated over 29,000 inserts resulting in 53% gene saturation and a more diverse collection of phenotypically stronger insertional alleles. We found that piggyBac has distinct global and local gene-tagging behavior from that of P elements. Notably, piggyBac excisions from the germ line are nearly always precise, piggyBac does not share chromosomal hotspots associated with P and piggyBac is more effective at gene disruption because it lacks the P bias for insertion in 5′ regulatory sequences.
Nature Genetics | 2004
Annette L. Parks; Kevin R. Cook; Marcia Belvin; Nicholas Dompe; Robert Fawcett; Kari Huppert; Lory R Tan; Christopher G. Winter; Kevin Bogart; Jennifer E Deal; Megan E Deal-Herr; Deanna Grant; Marie Marcinko; Wesley Y Miyazaki; Stephanie A. Robertson; Kenneth James Shaw; Mariano Tabios; Valentina Vysotskaia; Lora Zhao; Rachel S. Andrade; Kyle Andrew Edgar; Elizabeth Howie; Keith Killpack; Brett Milash; Amanda Norton; Doua Thao; Kellie Whittaker; Millicent A Winner; Lori Friedman; Jonathan Margolis
In fruit fly research, chromosomal deletions are indispensable tools for mapping mutations, characterizing alleles and identifying interacting loci. Most widely used deletions were generated by irradiation or chemical mutagenesis. These methods are labor-intensive, generate random breakpoints and result in unwanted secondary mutations that can confound phenotypic analyses. Most of the existing deletions are large, have molecularly undefined endpoints and are maintained in genetically complex stocks. Furthermore, the existence of haplolethal or haplosterile loci makes the recovery of deletions of certain regions exceedingly difficult by traditional methods, resulting in gaps in coverage. Here we describe two methods that address these problems by providing for the systematic isolation of targeted deletions in the D. melanogaster genome. The first strategy used a P element–based technique to generate deletions that closely flank haploinsufficient genes and minimize undeleted regions. This deletion set has increased overall genomic coverage by 5–7%. The second strategy used FLP recombinase and the large array of FRT-bearing insertions described in the accompanying paper to generate 519 isogenic deletions with molecularly defined endpoints. This second deletion collection provides 56% genome coverage so far. The latter methodology enables the generation of small custom deletions with predictable endpoints throughout the genome and should make their isolation a simple and routine task.
Nature Biotechnology | 2004
Jonathan Margolis; Greg Plowman
Chemical screening in a zebrafish mutant has turned up two compounds that rescue a heart defect, but will this yield new drugs?
Drug Discovery Today: Technologies | 2004
Nathan W Bays; Jonathan Margolis
Yeast biology has yielded major insights into fundamental cellular biology and has served as a remarkable platform for technical innovation. We review how these resources can be applied to the validation of mammalian or anti-fungal drug targets. These approaches range from elucidating synergistic interactions between drugs and targets to facile methods for tracking proteins in the cell or characterization of receptor biology. We also discuss web-based resources that integrate the extensive biochemical, cell biological, and genetic literature exploring the basic biology of these model eukaryotic cells.:
Archive | 1999
Andrew Roy Buchman; Christian Burks; Helen Francis-Lang; Lucile A. Gillett; Jonathan Heller; Casey Kopczynski; Jonathan Margolis; Darren Mark Platt; Bindu Priya Reddy; Candace Swimmer; John W. Winslow; Yuling Luo
Archive | 2000
Sheila Akiko Homburger; Allen James Ebens; Helen Frances-Lang; Jonathan Margolis
Nature Biotechnology | 1998
Jonathan Margolis; Geoffrey Duyk
Archive | 2002
Jonathan Margolis; Margaret L. Winberg; Stephen Thibault; Allen James Ebens
Archive | 2006
Jonathan Margolis; Carol M. Singh; Ronald D. Smith; Hartmut Tintrup