Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan N. Pauli is active.

Publication


Featured researches published by Jonathan N. Pauli.


Molecular Ecology | 2012

Reliability of genetic bottleneck tests for detecting recent population declines

M. Zachariah Peery; Rebecca Kirby; Brendan N. Reid; Ricka E. Stoelting; Elena Doucet-Beer; Stacie J. Robinson; Catalina Vasquez-Carrillo; Jonathan N. Pauli; Per J. Palsbøll

The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popular approach for determining if a population decline has occurred because they only require sampling at a single point in time, yet reflect demographic history over multiple generations. However, a review of the published literature indicates that, as typically applied, microsatellite‐based bottleneck tests often do not detect bottlenecks in vertebrate populations known to have experienced declines. This observation was supported by simulations that revealed that bottleneck tests can have limited statistical power to detect bottlenecks largely as a result of limited sample sizes typically used in published studies. Moreover, commonly assumed values for mutation model parameters do not appear to encompass variation in microsatellite evolution observed in vertebrates and, on average, the proportion of multi‐step mutations is underestimated by a factor of approximately two. As a result, bottleneck tests can have a higher probability of ‘detecting’ bottlenecks in stable populations than expected based on the nominal significance level. We provide recommendations that could add rigor to inferences drawn from future bottleneck tests and highlight new directions for the characterization of demographic history.


Frontiers in Ecology and the Environment | 2013

The subnivium: a deteriorating seasonal refugium

Jonathan N. Pauli; Benjamin Zuckerberg; John P. Whiteman; Warren P. Porter

For many terrestrial organisms in the Northern Hemisphere, winter is a period of resource scarcity and energy deficits, survivable only because a seasonal refugium – the “subnivium” – exists beneath the snow. The warmer and more stable conditions within the subnivium are principally driven by snow duration, density, and depth. In temperate regions, the subnivium is important for the overwintering success of plants and animals, yet winter conditions are changing rapidly worldwide. Throughout the Northern Hemisphere, the impacts of climate change are predicted to be most prominent during the winter months, resulting in a shorter snow season and decreased snow depth. These climatic changes will likely modify the defining qualities of the subnivium, resulting in broad-scale shifts in distributions of species that are dependent on these refugia. Resultant changes to the subnivium, however, will be spatially and temporally variable. We believe that ecologists and managers are overlooking this widespread, crucia...


Proceedings of the National Academy of Sciences of the United States of America | 2015

Microbes are trophic analogs of animals

Shawn A. Steffan; Yoshito Chikaraishi; Cameron R. Currie; Heidi A. Horn; Hannah R. Gaines-Day; Jonathan N. Pauli; Juan Zalapa; Naohiko Ohkouchi

Significance We report evidence that microbes are trophically equivalent to animals. When bacteria or fungi are fed the same diets as animals, the microbes register the same trophic position as animals. This discovery reframes how microbes can be viewed within food chains and facilitates the inclusion of the microbiome in functional diversity studies. To demonstrate the broad applicability of our approach, we investigated the ancient symbioses represented by leaf-cutter ant fungus gardens, revealing four discrete trophic levels within this community and providing evidence that fungi, not ants, are the dominant herbivores of the Neotropics. Altogether, we show that microbes can be integrated with plants and animals in a food chain, thereby unifying the macro- and microbiome in studies of trophic ecology. In most ecosystems, microbes are the dominant consumers, commandeering much of the heterotrophic biomass circulating through food webs. Characterizing functional diversity within the microbiome, therefore, is critical to understanding ecosystem functioning, particularly in an era of global biodiversity loss. Using isotopic fingerprinting, we investigated the trophic positions of a broad diversity of heterotrophic organisms. Specifically, we examined the naturally occurring stable isotopes of nitrogen (15N:14N) within amino acids extracted from proteobacteria, actinomycetes, ascomycetes, and basidiomycetes, as well as from vertebrate and invertebrate macrofauna (crustaceans, fish, insects, and mammals). Here, we report that patterns of intertrophic 15N-discrimination were remarkably similar among bacteria, fungi, and animals, which permitted unambiguous measurement of consumer trophic position, independent of phylogeny or ecosystem type. The observed similarities among bacterial, fungal, and animal consumers suggest that within a trophic hierarchy, microbiota are equivalent to, and can be interdigitated with, macrobiota. To further test the universality of this finding, we examined Neotropical fungus gardens, communities in which bacteria, fungi, and animals are entwined in an ancient, quadripartite symbiosis. We reveal that this symbiosis is a discrete four-level food chain, wherein bacteria function as the apex carnivores, animals and fungi are meso-consumers, and the sole herbivores are fungi. Together, our findings demonstrate that bacteria, fungi, and animals can be integrated within a food chain, effectively uniting the macro- and microbiome in food web ecology and facilitating greater inclusion of the microbiome in studies of functional diversity.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

A syndrome of mutualism reinforces the lifestyle of a sloth.

Jonathan N. Pauli; Jorge E. Mendoza; Shawn A. Steffan; Cayelan C. Carey; Paul J. Weimer; M. Zachariah Peery

Arboreal herbivory is rare among mammals. The few species with this lifestyle possess unique adaptions to overcome size-related constraints on nutritional energetics. Sloths are folivores that spend most of their time resting or eating in the forest canopy. A three-toed sloth will, however, descend its tree weekly to defecate, which is risky, energetically costly and, until now, inexplicable. We hypothesized that this behaviour sustains an ecosystem in the fur of sloths, which confers cryptic nutritional benefits to sloths. We found that the more specialized three-toed sloths harboured more phoretic moths, greater concentrations of inorganic nitrogen and higher algal biomass than the generalist two-toed sloths. Moth density was positively related to inorganic nitrogen concentration and algal biomass in the fur. We discovered that sloths consumed algae from their fur, which was highly digestible and lipid-rich. By descending a tree to defecate, sloths transport moths to their oviposition sites in sloth dung, which facilitates moth colonization of sloth fur. Moths are portals for nutrients, increasing nitrogen levels in sloth fur, which fuels algal growth. Sloths consume these algae-gardens, presumably to augment their limited diet. These linked mutualisms between moths, sloths and algae appear to aid the sloth in overcoming a highly constrained lifestyle.


Molecular Ecology Resources | 2016

Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates

Emily D. Fountain; Jonathan N. Pauli; Brendan N. Reid; Per J. Palsbøll; M. Zachariah Peery

Restriction‐enzyme‐based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction‐enzyme‐based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother–offspring dyads of Hoffmans two‐toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference‐aligned and de novo‐assembled data sets. Genotyping error rates were more sensitive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo‐assembled data sets. For example, coverage ≥5 yielded median genotyping error rates of ≥0.03 and ≥0.11 in reference‐aligned and de novo‐assembled data sets, respectively. Genotyping error rates declined to ≤0.01 in reference‐aligned data sets with a coverage ≥30, but remained ≥0.04 in the de novo‐assembled data sets. We observed approximately 10‐ and 13‐fold declines in the number of loci sampled in the reference‐aligned and de novo‐assembled data sets when coverage was increased from ≥5 to ≥30 at quality score ≥30, respectively. Finally, we assessed the effects of genotyping coverage on a common population genetic application, parentage assignments, and showed that the proportion of incorrectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade‐off between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting genotyping error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restriction‐enzyme‐based SNP studies.


PLOS ONE | 2012

Unexpected strong polygyny in the brown-throated three-toed sloth.

Jonathan N. Pauli; M. Zachariah Peery

Promiscuous mating strategies are much more common than previously appreciated. So much so, that several authors have proposed that promiscuity is the “rule” rather than the exception in vertebrate mating systems. Decreasing species mobility and increasing habitat fragmentation have both been suggested to reduce the “polygyny potential” of the environment and promote other mating strategies like promiscuity in females. We explored the social and genetic mating system for one of the most sedentary extant mammals, the brown-throated three-toed sloth (Bradypus variegatus), within a highly fragmented Neotropical habitat. Surprisingly, we found that three-toed sloths were strongly polygynous, with males excluding male competitors from their core ranges, and exhibiting strong reproductive skew. Indeed, only 25% of all resident adult males sired offspring and one individual sired half of all sampled juveniles. Paradoxically, a sedentary life-history strategy seems to facilitate polygyny in fragmented landscapes because multiple females can persist within small patches of habitat, and be monopolized by a single male. Our work demonstrates that strong polygyny can arise in systems in which the polygyny potential should be extremely low, and other strategies, including promiscuity, would be favoured. Mating systems can be influenced by a multitude of factor and are dynamic, varying among taxa, over time, and across habitats; consequently, mating systems remain difficult to predict based on general ecological principles.


Environmental Microbiology | 2016

Diet specialization selects for an unusual and simplified gut microbiota in two‐ and three‐toed sloths

Kimberly A. Dill-McFarland; Paul J. Weimer; Jonathan N. Pauli; M. Zachariah Peery; Garret Suen

Symbiotic microbial communities are critical to the function and survival of animals. This relationship is obligatory for herbivores that engage gut microorganisms for the conversion of dietary plant materials into nutrients such as short-chain organic acids (SCOAs). The constraint on body size imposed by their arboreal lifestyle is thought to make this symbiosis especially important for sloths. Here, we use next-generation sequencing to identify the bacteria present in the fore and distal guts of wild two- and three-toed sloths, and correlate these communities with both diet and SCOAs. We show that, unlike other mammalian herbivores, sloth gut communities are dominated by the bacterial phyla Proteobacteria and Firmicutes. Specifically, three-toed sloths possess a highly conserved, low-diversity foregut community with a highly abundant Neisseria species associated with foregut lactate. In contrast, two-toed sloths have a more variable and diverse foregut microbiota correlated with a variety of SCOAs. These differences support the hypothesis that feeding behaviour selects for specific gut bacterial communities, as three-toed sloths subsist primarily on Cecropia tree leaves while two-toed sloths have a more generalist diet. The less diverse diet and gut microbiota of three-toed sloths may render them more susceptible to habitat loss and other diet-altering conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Opinion: Why we need a centralized repository for isotopic data

Jonathan N. Pauli; Seth D. Newsome; Joseph A. Cook; Chris Harrod; Shawn A. Steffan; Christopher J. O. Baker; Merav Ben-David; David Bloom; Gabriel J. Bowen; Thure E. Cerling; Carla Cicero; Craig S. Cook; Michelle T. Dohm; Prarthana S. Dharampal; Gary R. Graves; Robert Gropp; Keith A. Hobson; Chris Jordan; Bruce J. MacFadden; Suzanne E. Pilaar Birch; Jorrit Poelen; Sujeevan Ratnasingham; Laura Russell; Craig A. Stricker; Mark D. Uhen; Christopher T. Yarnes; Brian Hayden

Organizational structure for the proposed IsoBank. A central executive group would oversee four subcommittees (SC): Information technology, integrative disciplinary, education and training, and analytical expertise. GNIP, Global Network of Isotopes in Precipitation; IAEA, International Atomic Energy Association; QA/QC, quality assurance/quality control.


The American Naturalist | 2016

Arboreal Folivores Limit Their Energetic Output, All the Way to Slothfulness.

Jonathan N. Pauli; M. Zachariah Peery; Emily D. Fountain; William H. Karasov

By exploiting unutilized resources, organisms expand into novel niches, which can lead to adaptive radiation. However, some groups fail to diversify despite the apparent opportunity to do so. Although arising multiple times, arboreal folivores are rare and have not radiated, presumably because of energetic constraints. To explore this hypothesis, we quantified the field metabolic rate (FMR), movement, and body temperature for syntopic two- and three-toed sloths, extreme arboreal folivores that differ in their degree of specialization. Both species expended little energy, but three-toed sloths (162 kJ/day*kg0.734) possessed the lowest FMR recorded for any mammal. Three-toed sloths were more heterothermic and moved less than two-toed sloths. We then compared FMRs and basal metabolic rates (BMRs) for 19 species of arboreal folivores along a spectrum of specialization. Overall, arboreal folivores had lower BMRs and FMRs than other mammals, and increasing specialization led to lower FMRs but not BMRs. Thus, reduced energetic expenditure in specialized species was the result of thermoregulatory and behavioral strategies, rather than simply a proportionate reduction in BMR. Altogether, our findings support the concept that arboreal folivores are tightly constrained by nutritional energetics and help to explain the lack of radiation among species exploiting a lifestyle in the trees.


PLOS ONE | 2015

Winter Conditions and Land Cover Structure the Subnivium, A Seasonal Refuge beneath the Snow

Sonia K. Petty; Benjamin Zuckerberg; Jonathan N. Pauli

In seasonally snow-covered environments, many organisms endure winter by using the subnivium, a below-snow thermally stable seasonal refugium. Because the insulation of snow is dependent on snow depth and density, the stability of temperatures within the subnivium varies across land cover types. Additionally, across much of the Northern Hemisphere snow extent, depth and duration are generally decreasing while snow density is increasing due to climate change. These changes are likely to destabilize the thermal profile of the subnivium, although they have not yet been quantified. To explore the effects of land cover and climate change on the subnivium, we measured snow pack characteristics (depth and density), and ambient and subnivium temperatures from three different land cover types (prairie, deciduous forest, and coniferous forest) and within a micro-greenhouse (2.5 x 2.5 x 2 m) that maintained a temperature of 5°C warmer than outdoor ambient temperatures, and automatically opened during snow events throughout the winter of 2013/14. We found that the mean daily subnivium temperature was significantly colder in the deciduous cover type than the prairie cover type, and that prairie had higher maximum subnivium temperatures than both of the other cover types. Our climate change simulation revealed that, although ambient temperatures within the micro-greenhouse were 5°C warmer than outside the greenhouse, the daily minimum subnivium temperature was significantly lower inside the greenhouse. Our findings suggest that climate change could have considerable effects on the refuge quality of the subnivium, and that some cover types appear to be more susceptible to these effects than others.

Collaboration


Dive into the Jonathan N. Pauli's collaboration.

Top Co-Authors

Avatar

M. Zachariah Peery

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Benjamin Zuckerberg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Emily D. Fountain

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Rebecca Kirby

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Brendan N. Reid

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shawn A. Steffan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Wynne E. Moss

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip J. Manlick

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

John W. Pokallus

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge