Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Nafziger is active.

Publication


Featured researches published by Jonathan Nafziger.


Journal of Chemical Physics | 2011

Molecular binding energies from partition density functional theory.

Jonathan Nafziger; Qin Wu; Adam Wasserman

Approximate molecular calculations via standard Kohn-Sham density functional theory are exactly reproduced by performing self-consistent calculations on isolated fragments via partition density functional theory [P. Elliott, K. Burke, M. H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010)]. We illustrate this with the binding curves of small diatomic molecules. We find that partition energies are in all cases qualitatively similar and numerically close to actual binding energies. We discuss qualitative features of the associated partition potentials.


Journal of Physical Chemistry A | 2014

Density-based partitioning methods for ground-state molecular calculations.

Jonathan Nafziger; Adam Wasserman

With the growing complexity of systems that can be treated with modern electronic-structure methods, it is critical to develop accurate and efficient strategies to partition the systems into smaller, more tractable fragments. We review some of the various recent formalisms that have been proposed to achieve this goal using fragment (ground-state) electron densities as the main variables, with an emphasis on partition density-functional theory (PDFT), which the authors have been developing. To expose the subtle but important differences between alternative approaches and to highlight the challenges involved with density partitioning, we focus on the simplest possible systems where the various methods can be transparently compared. We provide benchmark PDFT calculations on homonuclear diatomic molecules and analyze the associated partition potentials. We derive a new exact condition determining the strength of the singularities of the partition potentials at the nuclei, establish the connection between charge-transfer and electronegativity equalization between fragments, test different ways of dealing with fractional fragment charges and spins, and finally outline a general strategy for overcoming delocalization and static-correlation errors in density-functional calculations.


Annual Review of Physical Chemistry | 2017

The Importance of Being Inconsistent

Adam Wasserman; Jonathan Nafziger; Kaili Jiang; Mincheol Kim; Eunji Sim; Kieron Burke

We review the role of self-consistency in density functional theory (DFT). We apply a recent analysis to both Kohn-Sham and orbital-free DFT, as well as to partition DFT, which generalizes all aspects of standard DFT. In each case, the analysis distinguishes between errors in approximate functionals versus errors in the self-consistent density. This yields insights into the origins of many errors in DFT calculations, especially those often attributed to self-interaction or delocalization error. In many classes of problems, errors can be substantially reduced by using better densities. We review the history of these approaches, discuss many of their applications, and give simple pedagogical examples.


Journal of Chemical Physics | 2015

Fragment-based treatment of delocalization and static correlation errors in density-functional theory

Jonathan Nafziger; Adam Wasserman

One of the most important open challenges in modern Kohn-Sham (KS) density-functional theory (DFT) is the correct treatment of systems involving fractional electron charges and spins. Approximate exchange-correlation functionals struggle with such systems, leading to pervasive delocalization and static correlation errors. We demonstrate how these errors, which plague density-functional calculations of bond-stretching processes, can be avoided by employing the alternative framework of partition density-functional theory (PDFT) even using the local density approximation for the fragments. Our method is illustrated with explicit calculations on simple systems exhibiting delocalization and static-correlation errors, stretched H2 (+), H2, He2 (+), Li2 (+), and Li2. In all these cases, our method leads to greatly improved dissociation-energy curves. The effective KS potential corresponding to our self-consistent solutions displays key features around the bond midpoint; these are known to be present in the exact KS potential, but are absent from most approximate KS potentials and are essential for the correct description of electron dynamics.


Journal of Chemical Theory and Computation | 2017

Accurate Reference Data for the Nonadditive, Noninteracting Kinetic Energy in Covalent Bonds

Jonathan Nafziger; Kaili Jiang; Adam Wasserman

The nonadditive, noninteracting kinetic energy (NAKE) is calculated numerically for fragments of H2, Li2, Be2, C2, N2, F2, and Na2 within partition density functional theory (PDFT). The resulting fragments are uniquely determined, and their sum reproduces the Kohn-Sham molecular density of the corresponding XC functional. We present the NAKE of these unique fragments as a function of internuclear separation and compare the use of fractional orbital occupation to the usual PDFT ensemble method for treating the fragment energies and densities. We also compare Thomas-Fermi and von Weizsäcker approximate kinetic energy functionals to the numerically exact solutions and find significant regions where the von Weizsäcker functional is nearly exact. In addition, we find that the von Weizsäcker approximation can provide accurate NAKE in stretched covalent bonds, especially in the cases of Li2 and Na2.


Journal of Chemical Physics | 2017

Partition-DFT on the water dimer

Sara Gómez; Jonathan Nafziger; Albeiro Restrepo; Adam Wasserman

As is well known, the ground-state symmetry group of the water dimer switches from its equilibrium Cs-character to C2h-character as the distance between the two oxygen atoms of the dimer decreases below RO-O∼2.5 Å. For a range of RO-O between 1 and 5 Å, and for both symmetries, we apply Partition Density Functional Theory (PDFT) to find the unique monomer densities that sum to the correct dimer densities while minimizing the sum of the monomer energies. We calculate the work involved in deforming the isolated monomer densities and find that it is slightly larger for the Cs geometry for all RO-O. We discuss how the PDFT densities and the corresponding partition potentials support the orbital-interaction picture of hydrogen-bond formation.


Journal of Chemical Physics | 2018

Non-additive non-interacting kinetic energy of rare gas dimers

Kaili Jiang; Jonathan Nafziger; Adam Wasserman

Approximations of the non-additive non-interacting kinetic energy (NAKE) as an explicit functional of the density are the basis of several electronic structure methods that provide improved computational efficiency over standard Kohn-Sham calculations. However, within most fragment-based formalisms, there is no unique exact NAKE, making it difficult to develop general, robust approximations for it. When adjustments are made to the embedding formalisms to guarantee uniqueness, approximate functionals may be more meaningfully compared to the exact unique NAKE. We use numerically accurate inversions to study the exact NAKE of several rare-gas dimers within partition density functional theory, a method that provides the uniqueness for the exact NAKE. We find that the NAKE decreases nearly exponentially with atomic separation for the rare-gas dimers. We compute the logarithmic derivative of the NAKE with respect to the bond length for our numerically accurate inversions as well as for several approximate NAKE functionals. We show that standard approximate NAKE functionals do not reproduce the correct behavior for this logarithmic derivative and propose two new NAKE functionals that do. The first of these is based on a re-parametrization of a conjoint Perdew-Burke-Ernzerhof (PBE) functional. The second is a simple, physically motivated non-decomposable NAKE functional that matches the asymptotic decay constant without fitting.


Physical Chemistry Chemical Physics | 2012

Fragment occupations in partition density functional theory

Rougang Tang; Jonathan Nafziger; Adam Wasserman


Archive | 2016

The Importance of Being Self-Consistent

Adam Wasserman; Jonathan Nafziger; Kaili Jiang; Mincheol Kim; Eunji Sim; Kieron Burke


Archive | 2013

Delocalization and Static Correlation in Partition Density-Functional Theory

Jonathan Nafziger; Adam Wasserman

Collaboration


Dive into the Jonathan Nafziger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kieron Burke

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Gómez

University of Antioquia

View shared research outputs
Researchain Logo
Decentralizing Knowledge