Jonathan Ong
General Electric
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Ong.
Journal of Turbomachinery-transactions of The Asme | 2012
Jonathan Ong; Robert J. Miller
This paper describes a method of improving the cooling of the hub region of high-pressure turbine (HPT) rotor by making better use of the unsteady coolant flows originating from the upstream vane. The study was performed computationally on an engine HPT stage with representative inlet hot streak and vane coolant conditions. An experimental validation study of hot streak migration was undertaken on two low-speed test facilities. The unsteady mechanisms that transport hot and cold fluid within the rotor hub region are first examined. It was found that vortex-blade interaction dominated the unsteady transport of hot and cold fluid in the rotor hub region. This resulted in the transport of hot fluid onto the rotor hub and pressure surface, causing a peak in the surface gas temperatures. The vane film coolant was found to have only a limited effect in cooling this region. A new cooling configuration was thus examined which exploits the unsteadiness in rotor hub to aid transport of coolant towards regions of high rotor surface temperatures. The new coolant was introduced from a slot upstream of the vane. This resulted in the feed of slot coolant at a different phase and location relative to the vane film coolant within the rotor. The slot coolant was entrained into the unsteady rotor secondary flows and transported towards the rotor hub-pressure surface region. The slot coolant reduced the peak time-averaged rotor temperatures by a similar amount as the vane film coolant despite having only a sixth of the coolant mass flow. Copyright
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2013
Andrew P. S. Wheeler; Jonathan Ong
In this paper we investigate the real gas flows which occur within Organic Rankine Cycle (ORC) turbines. A new method for the design of nozzles operating with dense gases is discussed, and applied to the case of a high pressure ratio turbine vane. A Navier-Stokes method which uses equations of states for a variety of working fluids typical of ORC turbines is then applied to the turbine vanes to determine the vane performance. The results suggest that the choice of working fluid has a significant influence on the turbine efficiency.
Volume 2: Aircraft Engine; Coal, Biomass and Alternative Fuels; Cycle Innovations | 2013
Andrew P. S. Wheeler; Jonathan Ong
In this paper we investigate the real gas flows which occur within Organic Rankine Cycle (ORC) turbines. A new method for the design of nozzles operating with dense gases is discussed, and applied to the case of a high pressure ratio turbine vane. A Navier-Stokes method which uses equations of states for a variety of working fluids typical of ORC turbines is then applied to the turbine vanes to determine the vane performance. The results suggest that the choice of working fluid has a significant influence on the turbine efficiency.Copyright
Volume 3B: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Supercritical CO2 Power Cycles; Wind Energy | 2014
Andrew P. S. Wheeler; Jonathan Ong
In this paper we investigate the three-dimensional unsteady real-gas flows which occur within Organic Rankine Cycle (ORC) turbines. A radial-inflow turbine stage operating with supersonic vane exit flows (M ≈ 1.4) is simulated using a RANS solver which includes real-gas effects. Steady CFD simulations show that small changes in the inducer shape can have a significant effect on turbine efficiency due to the development of supersonic flows in the rotor. Unsteady predictions show the same trends as the steady CFD, however a strong interaction between the vane trailing-edge shocks and rotor leading-edge leads to a significant drop in efficiency.Copyright
Journal of Turbomachinery-transactions of The Asme | 2016
Sungho Yoon; Thomas W. Vandeputte; Hiteshkumar Mistry; Jonathan Ong; Alexander Stein
In order to achieve high aerodynamic efficiency of a turbine stage, it is crucial to identify the source of aerodynamic losses and understand the associated loss generation mechanisms. This helps a turbine designer to maximize the performance of the turbine stage. It is well known that aerodynamic losses include profile, endwall, cooling/mixing loss, leakage, and trailing edge loss components. However, it is not a trivial task to separate one from the others because different loss sources occur concurrently and they interact with each other in a machine. Consequently, designers tend to rely on various empirical correlations to get an approximate estimate of each aerodynamic loss contribution. In this study, a systematic loss audit of an uncooled turbine stage has been undertaken by conducting a series of numerical experiments. By comparing entropy growth across the turbine stage, aerodynamic losses are broken down within the stator, rotor, and interblade row gap. Furthermore, losses across each blade row are broken down into profile, leakage, endwall, and trailing edge losses. The effect of unsteady interaction due to the relative motion of the stator and the rotor was also identified. For the examined turbine stage, trailing edge losses of the rotor were dominated, contributing to more than a third of the total aerodynamic loss. The profile loss across the stator and the rotor, unsteady loss between the stator and the rotor, and the stator endwall loss were also identified to be the significant loss sources for this turbine stage. The design implications of the findings are discussed.
Journal of Physics: Conference Series | 2017
Fj Durá Galiana; Aps Wheeler; Jonathan Ong; Ca de M Ventura
This paper describes a number of recent investigations into the effect of dense gas dynamics on ORC transonic turbine performance. We describe a combination of experimental, analytical and computational studies which are used to determine how, in-particular, trailing-edge loss changes with choice of working fluid. A Ludwieg tube transient wind-tunnel is used to simulate a supersonic base flow which mimics an ORC turbine vane trailing-edge flow. Experimental measurements of wake profiles and trailing-edge base pressure with different working fluids are used to validate high-order CFD simulations. In order to capture the correct mixing in the base region, Large-Eddy Simulations (LES) are performed and verified against the experimental data by comparing the LES with different spatial and temporal resolutions. RANS and Detached-Eddy Simulation (DES) are also compared with experimental data. The effect of different modelling methods and working fluid on mixed-out loss is then determined. Current results point at LES predicting the closest agreement with experimental results, and dense gas effects are consistently predicted to increase loss.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2010
Jonathan Ong; Robert J. Miller; J D Denton
Abstract Accurate predictions of combustor hot streak migration enable the turbine designer to identify high-temperature regions that can limit component life. It is therefore important that these predictions are achieved within the short time scales of a design process. This article compares temperature measurements of a circular hot streak through a turning duct and a research turbine with predictions using a three-dimensional Reynolds-averaged Navier—Stokes solver. It was found that the mixing length turbulence model did not predict the hot streak dissipation accurately. However, implementation of a very simple model of the free stream turbulence (FST) significantly improved the exit temperature predictions on both the duct and research turbine. One advantage of the simple FST model described over more complex alternatives is that no additional equations are solved. This makes the method attractive for design purposes, as it is not associated with any increase in computational time.
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition | 2015
Francisco J. Durá Galiana; Andrew P. S. Wheeler; Jonathan Ong
In this paper vane trailing-edge losses which occur in Organic Rankine Cycle (ORC) turbines are investigated. Experiments are performed to study the influence of dense gas effects on trailing-edge loss in supersonic flows using a novel Ludwieg tube facility for the study of dense-gas flows. The data is also used to validate a CFD flow solver. The computational simulations are then used to determine the contributions to loss from shocks and viscous effects which occur at the vane trailing-edge. The results show that dense gas effects play a vital role in the structure of the trailing-edge flow, and control the extent of shock and viscous losses.Copyright
Journal of Turbomachinery-transactions of The Asme | 2012
Jonathan Ong; Robert J. Miller; Sumiu Uchida
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition | 2018
Li-Wei Chen; Christian Wakelam; Jonathan Ong; Andreas Peters; Andrea Milli; Vittorio Michelassi