Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan P. Jackson is active.

Publication


Featured researches published by Jonathan P. Jackson.


Drug Metabolism and Disposition | 2009

Hepatic Cytochrome P450 Enzyme Alterations in Humans with Progressive Stages of Nonalcoholic Fatty Liver Disease

Craig D. Fisher; Andrew J. Lickteig; Lisa M. Augustine; James Ranger-Moore; Jonathan P. Jackson; Stephen S. Ferguson; Nathan J. Cherrington

Members of the cytochrome P450 (P450) enzyme families CYP1, CYP2, and CYP3 are responsible for the metabolism of approximately 75% of all clinically relevant drugs. With the increased prevalence of nonalcoholic fatty liver disease (NAFLD), it is likely that patients with this disease represent an emerging population at significant risk for alterations in these important drug-metabolizing enzymes. The purpose of this study was to determine whether three progressive stages of human NALFD alter hepatic P450 expression and activity. Microsomes isolated from human liver samples diagnosed as normal, n = 20; steatosis, n = 11; nonalcoholic steatohepatitis (NASH) (fatty liver), n = 10; and NASH (no longer fatty), n = 11 were analyzed for P450 mRNA, protein, and enzyme activity. Microsomal CYP1A2, CYP2D6, and CYP2E1 mRNA levels were decreased with NAFLD progression, whereas CYP2A6, CYP2B6, and CYP2C9 mRNA expression increased. Microsomal protein expression of CYP1A2, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 tended to decrease with NAFLD progression. Likewise, functional activity assays revealed decreasing trends in CYP1A2 (p = 0.001) and CYP2C19 (p = 0.05) enzymatic activity with increasing NAFLD severity. In contrast, activity of CYP2A6 (p = 0.001) and CYP2C9 (diclofenac, p = 0.0001; tolbutamide, p = 0.004) was significantly increased with NAFLD progression. Increased expression of proinflammatory cytokines tumor necrosis factor α and interleukin 1β was observed and may be responsible for observed decreases in respective P450 activity. Furthermore, elevated CYP2C9 activity during NAFLD progression correlated with elevated hypoxia-induced factor 1α expression in the later stages of NAFLD. These results suggest that significant and novel changes occur in hepatic P450 activity during progressive stages of NAFLD.


Drug Metabolism and Disposition | 2011

Analysis of Global and Absorption, Distribution, Metabolism, and Elimination Gene Expression in the Progressive Stages of Human Nonalcoholic Fatty Liver Disease

April D. Lake; Petr Novak; Craig D. Fisher; Jonathan P. Jackson; Rhiannon N. Hardwick; Dean Billheimer; Walter T. Klimecki; Nathan J. Cherrington

Nonalcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that range from simple fatty liver to nonalcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of human NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism, and elimination (ADME) of drugs. Differential gene expression between three clinically defined pathological groups—normal, steatosis, and NASH—was analyzed. Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChip Human 1.0ST arrays. A total of 11,633 genes exhibited altered expression out of 33,252 genes at a 5% false discovery rate. Most gene expression changes occurred in the progression from steatosis to NASH. Principal component analysis revealed that hepatic disease status was the major determinant of differential ADME gene expression rather than age or sex of sample donors. Among the 515 drug transporters and 258 drug-metabolizing enzymes (DMEs) examined, uptake transporters but not efflux transporters or DMEs were significantly over-represented in the number of genes down-regulated. These results suggest that uptake transporter genes are coordinately targeted for down-regulation at the global level during the pathological development of NASH and that these patients may have decreased drug uptake capacity. This coordinated regulation of uptake transporter genes is indicative of a hepatoprotective mechanism acting to prevent accumulation of toxic intermediates in disease-compromised hepatocytes.


Drug Metabolism and Disposition | 2008

The Nrf2 activator oltipraz also activates the constitutive androstane receptor.

Matthew D. Merrell; Jonathan P. Jackson; Lisa M. Augustine; Craig D. Fisher; Angela L. Slitt; Jonathan M. Maher; Wendong Huang; David D. Moore; Youcai Zhang; Curtis D. Klaassen; Nathan J. Cherrington

Oltipraz (OPZ) is a well known inducer of NAD(P)H:quinone oxidoreductase (NQO1) along with other enzymes that comprise the nuclear factor E2–related factor 2 (Nrf2) battery of detoxification genes. However, OPZ treatment also induces expression of CYP2B, a gene regulated by the constitutive androstane receptor (CAR). Therefore, this study was designed to determine whether OPZ induces gene expression in the mouse liver through activation of CAR in addition to Nrf2. OPZ increased the mRNA expression of both Cyp2b10 and Nqo1 in C57BL/6 mouse livers. As expected, in livers from Nrf2-/- mice, OPZ induction of Nqo1 was reduced, indicating Nqo1 induction is dependent on Nrf2 activation, whereas Cyp2b10 induction was unchanged. The robust induction of Cyp2b10 by OPZ in wild-type mice was completely absent in CAR-/- mice, revealing a CAR-dependent induction by OPZ. OPZ also induced transcription of the human CYP2B6 promoter-reporter containing the phenobarbital (PB) responsive element in mouse liver using an in vivo transcription assay. Additionally, OPZ induced in vivo nuclear accumulation of CAR at 3 h but, as with PB, was unable to reverse androstanol repression of mouse CAR constitutive activity in transiently transfected HepG2 cells. In summary, OPZ induces expression of Cyp2b10 and Nqo1 via the activation of CAR and Nrf2, respectively.


Drug Metabolism and Disposition | 2016

Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures

Jonathan P. Jackson; Linhao Li; Erica D Chamberlain; Hongbing Wang; Stephen S. Ferguson

Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here “cryo-HepaRG”) has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening.


Drug Metabolism and Disposition | 2014

Identification of a Functional Antioxidant Response Element within the Eighth Intron of the Human ABCC3 Gene

Mark J. Canet; Matthew D. Merrell; Bryan Harder; Jonathan M. Maher; Tongde Wu; Andrew J. Lickteig; Jonathan P. Jackson; Donna D. Zhang; Masayuki Yamamoto; Nathan J. Cherrington

The ATP-binding cassette (ABC) family of transporters, including ABCC3, is a large family of efflux pumps that plays a pivotal role in the elimination of xenobiotics from the body. ABCC3 has been reported to be induced during hepatic stress conditions and through the progression of some forms of cancer. Several lines of evidence have implicated the transcription factor nuclear factor (erythroid-derived 2)–like 2 (Nrf2) in this induction. However, although rodent models have been investigated, a functional antioxidant response element (ARE) in the human ABCC3 gene has not been identified. The purpose of this study was to identify and characterize the ARE(s) responsible for mediating the Nrf2-dependent induction of the human ABCC3 gene. A high-throughput chromatin immunoprecipitation-sequencing analysis performed in A549 cells revealed a specific interaction between Nrf2 and the eighth intron of the human ABCC3 gene rather than the more prototypical flanking region of the gene. Subsequent in silico analysis of the intron identified two putative ARE elements that contained the core consensus ARE sequence commonly found in several Nrf2-responsive genes. Functional characterization of these two AREs using luciferase-reporter constructs with ARE mutant constructs revealed that one of these putative AREs is functionally active. Finally, DNA pull-down assays confirmed specific binding of these intronic AREs by Nrf2 in vitro. Our findings identify a functional Nrf2 response element within the eighth intron of the ABCC3 gene, which may provide mechanistic insight into the induction of ABCC3 during antioxidant response stimuli.


Drug Metabolism and Disposition | 2017

Prediction of Clinically Relevant Herb-Drug Clearance Interactions Using Sandwich-Cultured Human Hepatocytes: Schisandra spp. Case Study

Jonathan P. Jackson; Kimberly Freeman; Weslyn W. Friley; Ashley G. Herman; Christopher B. Black; Kenneth R. Brouwer; Amy L. Roe

The Schisandraceae family is reported to have a range of pharmacological activities, including anti-inflammatory effects. As with all herbal preparations, extracts of Schisandra species are mixtures composed of >50 lignans, especially schizandrins, deoxyschizandrins, and gomisins. In China, Schisandra sphenanthera extract (SSE) is often coadministered with immunosuppressant treatment of transplant recipients. In cases of coadministration, the potential for herb-drug interactions (HDIs) increases. Clinical studies have been used to assess HDI potential of SSE. Results demonstrated that chronic SSE administration reduced midazolam (MDZ) clearance by 52% in healthy volunteers. Although clinical studies are definitive and considered the “gold standard,” these studies are impractical for routine HDI assessments. Alternatively, in vitro strategies can be used to reduce the need for clinical studies. Transporter-certified sandwich-cultured human hepatocytes (SCHHs) provide a fully integrated hepatic cell system that maintains drug clearance pathways (metabolism and transport) and key regulatory pathways constitutive active/androstane receptor and pregnane X receptor (CAR/PXR) necessary for quantitative assessment of HDI potential. Mechanistic studies conducted in SCHHs demonstrated that SSE and the more commonly used dietary supplement Schisandra chinensis extract (SCE) inhibited CYP3A4/5-mediated metabolism and induced CYP3A4 mRNA in a dose-dependent manner. SSE and SCE reduced MDZ clearance to 0.577- and 0.599-fold of solvent control, respectively, in chronically exposed SCHHs. These in vitro results agreed with SSE clinical findings and predicted a similar in vivo HDI effect with SCE exposure. These findings support the use of an SCHH system that maintains transport, metabolic, and regulatory functionality for routine HDI assessments to predict clinically relevant clearance interactions.


Archive | 2008

Chapter 7:The CYP2C Subfamily

Stephen S. Ferguson; Karen Black; Jonathan P. Jackson

The CYP2C subfamily of metalloenzymes is generally accepted as the second most pharmacologically important group of CYP450s in humans after the CYP3A subfamily due to its prominent role in human drug metabolism. The CYP2Cs are involved in the metabolism of numerous clinically-important drugs such as...


Pharmacogenetics | 2002

IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF NEW POTENTIALLY DEFECTIVE ALLELES OF HUMAN CYP2C19

Joyce Blaisdell; Harvey W. Mohrenweiser; Jonathan P. Jackson; Stephen S. G. Ferguson; Sherry J. Coulter; Brian Chanas; Tina Xi; Burhan I. Ghanayem; Joyce A. Goldstein


Molecular Pharmacology | 2004

The constitutive active/androstane receptor regulates phenytoin induction of Cyp2c29

Jonathan P. Jackson; Stephen S. G. Ferguson; Rick Moore; Masahiko Negishi; Joyce A. Goldstein


Archives of Toxicology | 2008

Drug metabolizing enzyme induction pathways in experimental non-alcoholic steatohepatitis

Craig D. Fisher; Jonathan P. Jackson; Andrew J. Lickteig; Lisa M. Augustine; Nathan J. Cherrington

Collaboration


Dive into the Jonathan P. Jackson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joyce A. Goldstein

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge