Jonathan P. Pearce
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan P. Pearce.
adaptive agents and multi-agents systems | 2004
Rajiv T. Maheswaran; Milind Tambe; Emma Bowring; Jonathan P. Pearce; Pradeep Varakantham
Distributed Constraint Optimization (DCOP) is an elegant formalism relevant to many areas in multiagent systems, yet complete algorithms have not been pursued for real world applications due to perceived complexity. To capably capture a rich class of complex problem domains, we introduce the Distributed Multi-Event Scheduling (DiMES) framework and design congruent DCOP formulations with binary constraints which are proven to yield the optimal solution. To approach real-world efficiency requirements, we obtain immense speedups by improving communication structure and precomputing best case bounds. Heuristics for generating better communication structures and calculating bound in a distributed manner are provided and tested on systematically developed domains for meeting scheduling and sensor networks, exemplifying the viability of complete algorithms.
adaptive agents and multi-agents systems | 2007
Praveen Paruchuri; Jonathan P. Pearce; Milind Tambe; Sarit Kraus
In adversarial multiagent domains, security, commonly defined as the ability to deal with intentional threats from other agents, is a critical issue. This paper focuses on domains where these threats come from unknown adversaries. These domains can be modeled as Bayesian games; much work has been done on finding equilibria for such games. However, it is often the case in multiagent security domains that one agent can commit to a mixed strategy which its adversaries observe before choosing their own strategies. In this case, the agent can maximize reward by finding an optimal strategy, without requiring equilibrium. Previous work has shown this problem of optimal strategy selection to be NP-hard. Therefore, we present a heuristic called ASAP, with three key advantages to address the problem. First, ASAP searches for the highest-reward strategy, rather than a Bayes-Nash equilibrium, allowing it to find feasible strategies that exploit the natural first-mover advantage of the game. Second, it provides strategies which are simple to understand, represent, and implement. Third, it operates directly on the compact, Bayesian game representation, without requiring conversion to normal form. We provide an efficient Mixed Integer Linear Program (MILP) implementation for ASAP, along with experimental results illustrating significant speedups and higher rewards over other approaches.
Autonomous Agents and Multi-Agent Systems | 2006
Rajiv T. Maheswaran; Jonathan P. Pearce; Emma Bowring; Pradeep Varakantham; Milind Tambe
It is critical that agents deployed in real-world settings, such as businesses, offices, universities and research laboratories, protect their individual users’ privacy when interacting with other entities. Indeed, privacy is recognized as a key motivating factor in the design of several multiagent algorithms, such as in distributed constraint reasoning (including both algorithms for distributed constraint optimization (DCOP) and distributed constraint satisfaction (DisCSPs)), and researchers have begun to propose metrics for analysis of privacy loss in such multiagent algorithms. Unfortunately, a general quantitative framework to compare these existing metrics for privacy loss or to identify dimensions along which to construct new metrics is currently lacking. This paper presents three key contributions to address this shortcoming. First, the paper presents VPS (Valuations of Possible States), a general quantitative framework to express, analyze and compare existing metrics of privacy loss. Based on a state-space model, VPS is shown to capture various existing measures of privacy created for specific domains of DisCSPs. The utility of VPS is further illustrated through analysis of privacy loss in DCOP algorithms, when such algorithms are used by personal assistant agents to schedule meetings among users. In addition, VPS helps identify dimensions along which to classify and construct new privacy metrics and it also supports their quantitative comparison. Second, the article presents key inference rules that may be used in analysis of privacy loss in DCOP algorithms under different assumptions. Third, detailed experiments based on the VPS-driven analysis lead to the following key results: (i) decentralization by itself does not provide superior protection of privacy in DisCSP/DCOP algorithms when compared with centralization; instead, privacy protection also requires the presence of uncertainty about agents’ knowledge of the constraint graph. (ii) one needs to carefully examine the metrics chosen to measure privacy loss; the qualitative properties of privacy loss and hence the conclusions that can be drawn about an algorithm can vary widely based on the metric chosen. This paper should thus serve as a call to arms for further privacy research, particularly within the DisCSP/DCOP arena.
adaptive agents and multi-agents systems | 2005
Milind Tambe; Emma Bowring; Hyuckchul Jung; Gal A. Kaminka; Rajiv T. Maheswaran; Janusz Marecki; Pragnesh Jay Modi; Ranjit Nair; Stephen Okamoto; Jonathan P. Pearce; Praveen Paruchuri; David V. Pynadath; Paul Scerri; Nathan Schurr; Pradeep Varakantham
Today within the AAMAS community, we see at least four competing approaches to building multiagent systems: belief-desire-intention (BDI), distributed constraint optimization (DCOP), distributed POMDPs, and auctions or game-theoretic approaches. While there is exciting progress within each approach, there is a lack of cross-cutting research. This paper highlights hybrid approaches for multiagent teamwork. In particular, for the past decade, the TEAMCORE research group has focused on building agent teams in complex, dynamic domains. While our early work was inspired by BDI, we will present an overview of recent research that uses DCOPs and distributed POMDPs in building agent teams. While DCOP and distributed POMDP algorithms provide promising results, hybrid approaches help us address problems of scalability and expressiveness. For example, in the BDI-POMDP hybrid approach, BDI team plans are exploited to improve POMDP tractability, and POMDPs improve BDI team plan performance. We present some recent results from applying this approach in a Disaster Rescue simulation domain being developed with help from the Los Angeles Fire Department.
Archive | 2006
Rajiv T. Maheswaran; Jonathan P. Pearce; Milind Tambe
This paper addresses the application of distributed constraint optimization problems (DCOPs) to large-scale dynamic environments. We introduce a decomposition of DCOP into a graphical game and investigate the evolution of various stochastic and deterministic algorithms. We also develop techniques that allow for coordinated negotiation while maintaining distributed control of variables. We prove monotonicity properties of certain approaches and detail arguments about equilibrium sets that offer insight into the tradeoffs involved in lever-aging efficiency and solution quality. The algorithms and ideas were tested and illustrated on several graph coloring domains.
adaptive agents and multi-agents systems | 2006
Rachel Greenstadt; Jonathan P. Pearce; Emma Bowring; Milind Tambe
Distributed Constraint Optimization (DCOP) is rapidly emerging as a prominent technique for multiagent coordination. Unfortunately, rigorous quantitative evaluations of privacy loss in DCOP algorithms have been lacking despite the fact that agent privacy is a key motivation for applying DCOPs in many applications. Recently, Maheswaran et al. [3, 4] introduced a framework for quantitative evaluations of privacy in DCOP algorithms, showing that early DCOP algorithms lose more privacy than purely centralized approaches and questioning the motivation for applying DCOPs. Do state-of-the art DCOP algorithms suffer from a similar shortcoming? This paper answers that question by investigating the most efficient DCOP algorithms, including both DPOP and ADOPT.
Ai Magazine | 2008
Jonathan P. Pearce; Milind Tambe; Rajiv T. Maheswaran
In many cooperative multiagent domains, the effect of local interactions between agents can be compactly represented as a network structure. Given that agents are spread across such a network, agents directly interact only with a small group of neighbors. A distributed constraint optimization problem (DCOP) is a useful framework to reason about such networks of agents. Given agents’ inability to communicate and collaborate in large groups in such networks, we focus on an approach called k-optimality for solving DCOPs. In this approach, agents form groups of one or more agents until no group of k or fewer agents can possibly improve the DCOP solution; we define this type of local optimum, and any algorithm guaranteed to reach such a local optimum, as k-optimal. The article provides an overview of three key results related to koptimality. The first set of results gives worst-case guarantees on the solution quality of k-optima in a DCOP. These guarantees can help determine an appropriate k-optimal algorithm, or possibly an appropriate constraint graph structure, for agents to use in situations where the cost of coordination between agents must be weighed against the quality of the solution reached. The second set of results gives upper bounds on the number of k-optima that can exist in a DCOP. These results are useful in domains where a DCOP must generate a set of solutions rather than a single solution. Finally, we sketch algorithms for k-optimality and provide some experimental results for 1-, 2- and 3-optimal algorithms for several types of DCOPs.
adaptive agents and multi-agents systems | 2006
Jonathan P. Pearce; Rajiv T. Maheswaran; Milind Tambe
A distributed constraint optimization problem (DCOP) is a formalism that captures the rewards and costs of local interactions within a team of agents, each of whom is choosing an individual action. When rapidly selecting a single joint action for a team, we typically solve DCOPs (often using locally optimal algorithms) to generate a single solution. However, in scenarios where a set of joint actions (i.e. a set of assignments to a DCOP) is to be generated, metrics are needed to help appropriately select this set and efficiently allocate resources for the joint actions in the set. To address this need, we introduce k-optimality, a metric that captures the desirable properties of diversity and relative quality of a set of locally-optimal solutions using a parameter that can be tuned based on the level of these properties required. To achieve effective resource allocation for this set, we introduce several upper bounds on the cardinalities of k-optimal joint action sets. These bounds are computable in constant time if we ignore the graph structure, but tighter, graph-based bounds are feasible with higher computation cost. Bounds help choose the appropriate level of k-optimality for settings with fixed resources and help determine appropriate resource allocation for settings where a fixed level of k-optimality is desired. In addition, our bounds for a 1-optimal joint action set for a DCOP also apply to the number of pure-strategy Nash equilibria in a graphical game of noncooperative agents.
Information Technology & Management | 2009
Praveen Paruchuri; Jonathan P. Pearce; Janusz Marecki; Milind Tambe; Sarit Kraus
We consider the problem of providing decision support to a patrolling or security service in an adversarial domain. The idea is to create patrols that can achieve a high level of coverage or reward while taking into account the presence of an adversary. We assume that the adversary can learn or observe the patrolling strategy and use this to its advantage. We follow two different approaches depending on what is known about the adversary. If there is no information about the adversary we use a Markov Decision Process (MDP) to represent patrols and identify randomized solutions that minimize the information available to the adversary. This lead to the development of algorithms CRLP and BRLP, for policy randomization of MDPs. Second, when there is partial information about the adversary we decide on efficient patrols by solving a Bayesian–Stackelberg games. Here, the leader decides first on a patrolling strategy and then an adversary, of possibly many adversary types, selects its best response for the given patrol. We provide two efficient MIP formulations named DOBSS and ASAP to solve this NP-hard problem. Our experimental results show the efficiency of these algorithms and illustrate how these techniques provide optimal and secure patrolling policies. We note that these models have been applied in practice, with DOBSS being at the heart of the ARMOR system that is currently deployed at the Los Angeles International airport (LAX) for randomizing checkpoints on the roadways entering the airport and canine patrol routes within the airport terminals.
adaptive agents and multi-agents systems | 2006
Pauline M. Berry; Cory Albright; Emma Bowring; Ken Conley; Kenneth Nitz; Jonathan P. Pearce; Bart Peintner; Shahin Saadati; Milind Tambe; Tomás E. Uribe; Neil Yorke-Smith
We will demonstrate distributed conflict resolution in the context of personalized meeting scheduling. The demonstration will show how distributed constraint optimization can be used to facilitate interaction between cognitive agents and their users. The system is part of the CALO personal cognitive assistant that will also be explored during the demonstration.