Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan P. Richardson is active.

Publication


Featured researches published by Jonathan P. Richardson.


Nature | 2016

Candidalysin is a fungal peptide toxin critical for mucosal infection

David L. Moyes; Duncan Wilson; Jonathan P. Richardson; Selene Mogavero; Shirley X. Tang; Julia Wernecke; Sarah Höfs; Remi L. Gratacap; Jon Robbins; Manohursingh Runglall; Celia Murciano; Mariana Blagojevic; Selvam Thavaraj; Toni M. Förster; Betty Hebecker; Lydia Kasper; Gema Vizcay; Simona I. Iancu; Nessim Kichik; Antje Häder; Oliver Kurzai; Ting Luo; Thomas Krüger; Olaf Kniemeyer; Ernesto Cota; Oliver Bader; Robert T. Wheeler; Thomas Gutsmann; Bernhard Hube; Julian R. Naglik

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name ‘Candidalysin’ for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


Virulence | 2015

Candida albicans-epithelial interactions and pathogenicity mechanisms: Scratching the surface

David L. Moyes; Jonathan P. Richardson; Julian R. Naglik

Until recently, epithelial cells have been a largely ignored component of host responses to microbes. However, this has been largely overturned over the last decade as an ever increasing number of studies have highlighted the key role that these cells play in many of our interactions with our microbiota and pathogens. Interactions of these cells with Candida albicans have been shown to be critical not just in host responses, but also in fungal cell responses, regulating fungal morphology and gene expression profile. In this review, we will explore the interactions between C. albicans and epithelial cells, and discuss how these interactions affect our relationship with this fungus.


The Journal of Infectious Diseases | 2014

Protection Against Epithelial Damage During Candida albicans Infection Is Mediated by PI3K/Akt and Mammalian Target of Rapamycin Signaling

David L. Moyes; Chengguo Shen; Celia Murciano; Manohursingh Runglall; Jonathan P. Richardson; Matthew Arno; Estibaliz Aldecoa-Otalora; Julian R. Naglik

Background. The ability of epithelial cells (ECs) to discriminate between commensal and pathogenic microbes is essential for healthy living. Key to these interactions are mucosal epithelial responses to pathogen-induced damage. Methods. Using reconstituted oral epithelium, we assessed epithelial gene transcriptional responses to Candida albicans infection by microarray. Signal pathway activation was monitored by Western blotting and transcription factor enzyme-linked immunosorbent assay, and the role of these pathways in C. albicans–induced damage protection was determined using chemical inhibitors. Results. Transcript profiling demonstrated early upregulation of epithelial genes involved in immune responses. Many of these genes constituted components of signaling pathways, but only NF-κB, MAPK, and PI3K/Akt pathways were functionally activated. We demonstrate that PI3K/Akt signaling is independent of NF-κB and MAPK signaling and plays a key role in epithelial immune activation and damage protection via mammalian target of rapamycin (mTOR) activation. Conclusions. PI3K/Akt/mTOR signaling may play a critical role in protecting epithelial cells from damage during mucosal fungal infections independent of NF-κB or MAPK signaling.


PLOS Pathogens | 2014

Candida albicans Pathogenicity and Epithelial Immunity

Julian R. Naglik; Jonathan P. Richardson; David L. Moyes

Candida species are one of the most common fungal pathogens of humans and the causative agents of superficial and invasive candidiasis. The vast majority of Candida infections are mucosal, manifesting as vaginal or oral candidiasis, which together account for an estimated 40 million infections per year. High-level Candida colonisation is also associated with several gut diseases, including Crohns disease and ulcerative colitis, and reducing fungal burdens reduces disease severity [1]. Additionally, Candida species are an ever-increasing problem in immunocompromised patients. Furthermore, in common with the vast majority of life-threatening systemic infections, systemic Candida infections are usually acquired through mucosal surfaces. Therefore, it is of paramount importance to understand how epithelial tissues detect and restrict these pathogens to mucosal surfaces.


Virulence | 2015

Adaptive immune responses to Candida albicans infection

Jonathan P. Richardson; David L. Moyes

Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.


Science immunology | 2017

Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin

Akash H. Verma; Jonathan P. Richardson; Chunsheng Zhou; Bianca M. Coleman; David L. Moyes; Jemima Ho; Anna R. Huppler; Kritika Ramani; Mandy J. McGeachy; Ilgiz A. Mufazalov; Ari Waisman; Lawrence P. Kane; Partha S. Biswas; Bernhard Hube; Julian R. Naglik; Sarah L. Gaffen

Candidalysin, a hypha-associated fungal peptide, drives interleukin-17 responses to Candida albicans. Calibrating antifungal responses Immune responses to fungal infections are complicated by the fact that fungi can exist in multiple forms depending on environmental cues. Here, Verma et al. have evaluated innate immune responses to Candida albicans, a fungus that transitions from yeast to filamentous hyphae as infection progresses. They find that candidalysin, a hypha-associated protein and virulence factor, serves as a danger signal that potentiates the immune response to C. albicans. Candidalysin-deficient strains of C. albicans caused minimal epithelial damage and elicited a blunted type 17 immune response. The authors propose that the innate antifungal responses to C. albicans are driven by a synergy between cellular damage triggered by candidalysin that is further amplified by interleukin-17 driven inflammation. Candida albicans is a dimorphic commensal fungus that causes severe oral infections in immunodeficient patients. Invasion of C. albicans hyphae into oral epithelium is an essential virulence trait. Interleukin-17 (IL-17) signaling is required for both innate and adaptive immunity to C. albicans. During the innate response, IL-17 is produced by γδ T cells and a poorly understood population of innate-acting CD4+ αβ T cell receptor (TCRαβ)+ cells, but only the TCRαβ+ cells expand during acute infection. Confirming the innate nature of these cells, the TCR was not detectably activated during the primary response, as evidenced by Nur77eGFP mice that report antigen-specific signaling through the TCR. Rather, the expansion of innate TCRαβ+ cells was driven by both intrinsic and extrinsic IL-1R signaling. Unexpectedly, there was no requirement for CCR6/CCL20-dependent recruitment or prototypical fungal pattern recognition receptors. However, C. albicans mutants that cannot switch from yeast to hyphae showed impaired TCRαβ+ cell proliferation and Il17a expression. This prompted us to assess the role of candidalysin, a hyphal-associated peptide that damages oral epithelial cells and triggers production of inflammatory cytokines including IL-1. Candidalysin-deficient strains failed to up-regulate Il17a or drive the proliferation of innate TCRαβ+ cells. Moreover, candidalysin signaled synergistically with IL-17, which further augmented the expression of IL-1α/β and other cytokines. Thus, IL-17 and C. albicans, via secreted candidalysin, amplify inflammation in a self-reinforcing feed-forward loop. These findings challenge the paradigm that hyphal formation per se is required for the oral innate response and demonstrate that establishment of IL-1– and IL-17–dependent innate immunity is induced by tissue-damaging hyphae.


PLOS Pathogens | 2015

Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis.

Jamie A. Greig; Ian Sudbery; Jonathan P. Richardson; Julian R. Naglik; Yue Wang; Peter E. Sudbery

The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity.


Infection and Immunity | 2017

Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa.

Jonathan P. Richardson; Hubertine M. E. Willems; David L. Moyes; Saeed Shoaie; Katherine S. Barker; Shir Lynn Tan; Glen E. Palmer; Bernhard Hube; Julian R. Naglik; Brian M. Peters

ABSTRACT Unlike other forms of candidiasis, vulvovaginal candidiasis, caused primarily by the fungal pathogen Candida albicans, is a disease of immunocompetent and otherwise healthy women. Despite its prevalence, the fungal factors responsible for initiating symptomatic infection remain poorly understood. One of the hallmarks of vaginal candidiasis is the robust recruitment of neutrophils to the site of infection, which seemingly do not clear the fungus, but rather exacerbate disease symptomatology. Candidalysin, a newly discovered peptide toxin secreted by C. albicans hyphae during invasion, drives epithelial damage, immune activation, and phagocyte attraction. Therefore, we hypothesized that Candidalysin is crucial for vulvovaginal candidiasis immunopathology. Anti-Candida immune responses are anatomical-site specific, as effective gastrointestinal, oral, and vaginal immunities are uniquely compartmentalized. Thus, we aimed to identify the immunopathologic role of Candidalysin and downstream signaling events at the vaginal mucosa. Microarray analysis of C. albicans-infected human vaginal epithelium in vitro revealed signaling pathways involved in epithelial damage responses, barrier repair, and leukocyte activation. Moreover, treatment of A431 vaginal epithelial cells with Candidalysin induced dose-dependent proinflammatory cytokine responses (including interleukin 1α [IL-1α], IL-1β, and IL-8), damage, and activation of c-Fos and mitogen-activated protein kinase (MAPK) signaling, consistent with fungal challenge. Mice intravaginally challenged with C. albicans strains deficient in Candidalysin exhibited no differences in colonization compared to isogenic controls. However, significant decreases in neutrophil recruitment, damage, and proinflammatory cytokine expression were observed with these strains. Our findings demonstrate that Candidalysin is a key hypha-associated virulence determinant responsible for the immunopathogenesis of C. albicans vaginitis.


Mbio | 2018

Processing of Candida albicans Ece1p is critical for Candidalysin maturation and fungal virulence

Jonathan P. Richardson; Selene Mogavero; David L. Moyes; Mariana Blagojevic; Thomas Krüger; Akash H. Verma; Bianca M. Coleman; Jacinto S De La Cruz Diaz; Daniela Schulz; Nicole O. Ponde; Giulia Carrano; Olaf Kniemeyer; Duncan Wilson; Oliver Bader; Simona I. Enoui; Jemima Yuer May Ho; Nessim Kichik; Sarah L. Gaffen; Bernhard Hube; Julian R. Naglik

ABSTRACT Candida albicans is an opportunistic fungal pathogen responsible for superficial and life-threatening infections in humans. During mucosal infection, C. albicans undergoes a morphological transition from yeast to invasive filamentous hyphae that secrete candidalysin, a 31-amino-acid peptide toxin required for virulence. Candidalysin damages epithelial cell plasma membranes and stimulates the activating protein 1 (AP-1) transcription factor c-Fos (via p38–mitogen-activated protein kinase [MAPK]), and the MAPK phosphatase MKP1 (via extracellular signal-regulated kinases 1 and 2 [ERK1/2]–MAPK), which trigger and regulate proinflammatory cytokine responses, respectively. The candidalysin toxin resides as a discrete cryptic sequence within a larger 271-amino-acid parental preproprotein, Ece1p. Here, we demonstrate that kexin-like proteinases, but not secreted aspartyl proteinases, initiate a two-step posttranslational processing of Ece1p to produce candidalysin. Kex2p-mediated proteolysis of Ece1p after Arg61 and Arg93, but not after other processing sites within Ece1p, is required to generate immature candidalysin from Ece1p, followed by Kex1p-mediated removal of a carboxyl arginine residue to generate mature candidalysin. C. albicans strains harboring mutations of Arg61 and/or Arg93 did not secrete candidalysin, were unable to induce epithelial damage and inflammatory responses in vitro, and showed attenuated virulence in vivo in a murine model of oropharyngeal candidiasis. These observations identify enzymatic processing of C. albicans Ece1p by kexin-like proteinases as crucial steps required for candidalysin production and fungal pathogenicity. IMPORTANCE Candida albicans is an opportunistic fungal pathogen that causes mucosal infection in millions of individuals worldwide. Successful infection requires the secretion of candidalysin, the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is derived from its parent protein Ece1p. Here, we identify two key amino acids within Ece1p vital for processing and production of candidalysin. Mutations of these residues render C. albicans incapable of causing epithelial damage and markedly reduce mucosal infection in vivo. Importantly, candidalysin production requires two individual enzymatic events. The first involves processing of Ece1p by Kex2p, yielding immature candidalysin, which is then further processed by Kex1p to produce the mature toxin. These observations identify important steps for C. albicans pathogenicity at mucosal surfaces. Candida albicans is an opportunistic fungal pathogen that causes mucosal infection in millions of individuals worldwide. Successful infection requires the secretion of candidalysin, the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is derived from its parent protein Ece1p. Here, we identify two key amino acids within Ece1p vital for processing and production of candidalysin. Mutations of these residues render C. albicans incapable of causing epithelial damage and markedly reduce mucosal infection in vivo. Importantly, candidalysin production requires two individual enzymatic events. The first involves processing of Ece1p by Kex2p, yielding immature candidalysin, which is then further processed by Kex1p to produce the mature toxin. These observations identify important steps for C. albicans pathogenicity at mucosal surfaces.


Journal of Fungi | 2018

Candida–Epithelial Interactions

Jonathan P. Richardson; Jemima Ho; Julian R. Naglik

A plethora of intricate and dynamic molecular interactions occur between microbes and the epithelial cells that form the mucosal surfaces of the human body. Fungi, particularly species of Candida, are commensal members of our microbiota, continuously interacting with epithelial cells. Transient and localised perturbations to the mucosal environment can facilitate the overgrowth of fungi, causing infection. This minireview will examine the direct and indirect mechanisms by which Candida species and epithelial cells interact with each other, and explore the factors involved in the central processes of adhesion, invasion, and destruction of host mucosal surfaces.

Collaboration


Dive into the Jonathan P. Richardson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jemima Ho

King's College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akash H. Verma

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge