Jonathan P. Rothstein
University of Massachusetts Amherst
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan P. Rothstein.
Physics of Fluids | 2004
Jia Ou; Blair Perot; Jonathan P. Rothstein
A series of experiments is presented which demonstrate significant drag reduction for the laminar flow of water through microchannels using hydrophobic surfaces with well-defined micron-sized surface roughness. These ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of microposts and microridges which are made hydrophobic through a chemical reaction with an organosilane. An experimental flow cell is used to measure the pressure drop as a function of the flow rate for a series of microchannel geometries and ultrahydrophobic surface designs. Pressure drop reductions up to 40% and apparent slip lengths larger than 20 μm are obtained using ultrahydrophobic surfaces. No drag reduction is observed for smooth hydrophobic surfaces. A confocal surface metrology system was used to measure the deflection of an air–water interface that is formed between microposts and supported by surface tension. This shear-free interface reduces the ...
Physics of Fluids | 2005
Jia Ou; Jonathan P. Rothstein
A series of experiments are presented which study the flow kinematics of water past drag-reducing superhydrophobic surfaces. The ultrahydrophobic surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate precise patterns of micrometer-sized ridges aligned in the flow direction. The ridges are made hydrophobic through a chemical reaction with an organosilane. An experimental flow cell is used to measure the velocity profile and the pressure drop as a function of the flow rate for a series of rectangular cross-section microchannel geometries and ultrahydrophobic surface designs. The velocity profile across the microchannel is determined through microparticle image velocimetry (μ-PIV) measurements capable of resolving the flow down to lengthscales well below the size of the surface features. Through these detailed velocity measurements, it is demonstrated that slip along the shear-free air-water interface supported between the hydrophobic micrometer-sized ridges is th...
Physics of Fluids | 2009
Robert Daniello; Nicholas E. Waterhouse; Jonathan P. Rothstein
In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures ...
Journal of Non-newtonian Fluid Mechanics | 2001
Jonathan P. Rothstein; Gareth H. McKinley
The flow of a polystyrene Boger fluid through axisymmetric contraction‐expansions having various contraction ratios (2 8) and varying degrees of re-entrant corner curvatures are studied experimentally over a large range of Deborah numbers. The ideal elastic fluid is dilute, monodisperse and well characterized in both shear and transient uniaxial extension. A large enhanced pressure drop above that of a Newtonian fluid is observed independent of contraction ratio and re-entrant corner curvature. Streak images, laser Doppler velocimetry (LDV) and digital particle image velocimetry (DPIV) are used to investigate the flow kinematics upstream of the contraction plane. LDV is used to measure velocity fluctuation in the mean flow field and to characterize a global elastic flow instability which occurs at large Deborah numbers. For a contraction ratio of D 2, a steady elastic lip vortex is observed while for contraction ratios of 4 8, no lip vortex is observed and a corner vortex is seen. Rounding the re-entrant corner leads to shifts in the onset of the flow transitions at larger Deborah numbers, but does not qualitatively change the overall structure of the flow field. We describe a simple rescaling of the deformation rate which incorporates the effects of lip curvature and allows measurements of vortex size, enhanced pressure drop and critical Deborah number for the onset of elastic instability to be collapsed onto master curves. Transient extensional rheology measurements are utilized to explain the significant differences in vortex growth pathways (i.e. elastic corner vortex versus lip vortex growth) observed between the polystyrene Boger fluids used in this research and polyisobutylene and polyacrylamide Boger fluids used in previous contraction flow experiments. We show that the role of contraction ratio on vortex growth dynamics can be rationalized by considering the dimensionless ratio of the elastic normal stress difference in steady shear flow to those in transient uniaxial extension. It appears that the differences in this normal stress ratio for different fluids at a given Deborah number arise from variations in solvent quality or excluded volume effects.
Journal of Fluid Mechanics | 2009
Michael B. Martell; J. Blair Perot; Jonathan P. Rothstein
Direct numerical simulations (DNSs) are used to investigate the drag-reducing performance of superhydrophobic surfaces (SHSs) in turbulent channel flow. SHSs combine surface roughness with hydrophobicity and can, in some cases, support a shear-free air–water interface. Slip velocities, wall shear stresses and Reynolds stresses are considered for a variety of SHS microfeature geometry configurations at a friction Reynolds number of Re τ ≈ 180. For the largest microfeature spacing studied, an average slip velocity over 75% of the bulk velocity is obtained, and the wall shear stress reduction is found to be nearly 40%. The simulation results suggest that the mean velocity profile near the superhydrophobic wall continues to scale with the wall shear stress but is offset by a slip velocity that increases with increasing microfeature spacing.
Journal of Non-newtonian Fluid Mechanics | 1999
Jonathan P. Rothstein; Gareth H. McKinley
The creeping flow of a dilute (0.025 wt%) monodisperse polystyrene/polystyrene Boger fluid through a 4 : 1 : 4 axisymmetric contraction/expansion is experimentally observed for a wide range of Deborah numbers. Pressure drop measurements across the orifice plate show a large extra pressure drop that increases monotonically with Deborah number above the value observed for a similar Newtonian fluid at the same flow rate. This enhancement in the dimensionless pressure drop is not associated with the onset of a flow instability, yet it is not predicted by existing steady-state or transient numerical computations with simple dumbbell models. It is conjectured that this extra pressure drop is the result of an additional dissipative contribution to the polymeric stress arising from a stress-conformation hysteresis in the strong non-homogeneous extensional flow near the contraction plane. Such a hysteresis has been independently measured and computed in recent studies of homogeneous transient uniaxial stretching of PS/PS Boger fluids [Doyle et al., J. Non-Newtonian Fluid Mech. 76 (1998)]. Flow visualization and velocity field measurements using digital particle image velocimetry (DPIV) show large upstream growth of the corner vortex with increasing Deborah number. At large Deborah numbers, the onset of an elastic instability is observed, first locally as small amplitude fluctuations in the pressure measurements, and then globally as an azimuthal precessing of the upstream corner vortex accompanied by periodic oscillations in the pressure drop across the orifice. # 1999 Elsevier Science B.V. All rights reserved.
Journal of Rheology | 2003
Jonathan P. Rothstein
A filament stretching rheometer is used to follow the evolution in the tensile force and the flow induced birefringence of a wormlike micelle solution experiencing a uniaxial elongation flow. The experiments are performed using a series of wormlike micelle solutions of cetyltrimethylammonium bromide and sodium salicylate in de-ionized water. The linear viscoelastic shear rheology of the wormlike micelle solutions is well described by an upper convected Maxwell model with a single relaxation time. In transient homogeneous uniaxial extension, the wormlike micelle solutions demonstrate significant strain hardening and a failure of the stress-optical, however, no stress-conformation hysteresis is observed. A quantitative fit to the extensional rheology of each of the wormlike micelle solution tested is achieved with a FENE–PM model having as few as two relaxation modes. At a critical stress, nearly independent of strain rate, the wormlike micelle solutions filaments are found to fail through a dramatic ruptur...
Physics of Fluids | 2010
Michael B. Martell; Jonathan P. Rothstein; J. Blair Perot
These surfaces have been shown to provide drag reduction in laminar and turbulent flows. In this work, direct numerical simulation is used to investigate the drag reducing performance of superhydrophobic surfaces in turbulent channel flow. Slip velocities, wall shear stresses, and Reynolds stresses are determined for a variety of superhydrophobic surface microfeature geometry configurations at friction Reynolds numbers of Re180, Re395, and Re590. This work provides evidence that superhydrophobic surfaces are capable of reducing drag in turbulent flow situations by manipulating the laminar sublayer. For the largest microfeature spacing, an average slip velocity over 80% of the bulk velocity is obtained, and the wall shear stress reduction is found to be greater than 50%. The simulation results suggest that the mean velocity profile near the superhydrophobic wall continues to scale with the wall shear stress and the log layer is still present, but both are offset by a slip velocity that is primarily dependent on the microfeature spacing.
Journal of Physics D | 2010
Michael A. Nilsson; Robert Daniello; Jonathan P. Rothstein
Considerable efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water. Many of these methods require complex and expensive fabrication techniques. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. Furthermore, we show that a wide range of both advancing contact angles and contact angle hysteresis can be achieved by varying the grit size of the sandpaper, allowing for future hysteresis and contact angle studies. Scanning electron microscopy images of the roughened surfaces depict the range and amplitude of length scales imparted on the surface by the sandpaper, which leads to deeper understanding of the state of wetting on the surface.
Nanotechnology | 2013
Jacob John; YuYing Tang; Jonathan P. Rothstein; James J. Watkins; Kenneth R. Carter
Successful implementation of a high-speed roll-to-roll nanoimprinting technique for continuous manufacturing of electronic devices has been hindered due to lack of simple substrate preparation steps, as well as lack of durable and long lasting molds that can faithfully replicate nanofeatures with high fidelity over hundreds of imprinting cycles. In this work, we demonstrate large-area high-speed continuous roll-to-roll nanoimprinting of 1D and 2D micron to sub-100 nm features on flexible substrate using perfluoropolyether (PFPE) composite molds on a custom designed roll-to-roll nanoimprinter. The efficiency and reliability of the PFPE based mold for the dynamic roll-to-roll patterning process was investigated. The PFPE composite mold replicated nanofeatures with high fidelity and maintained superb mold performance in terms of dimensional integrity of the nanofeatures, nearly defect free pattern transfer and exceptional mold recovering capability throughout hundreds of imprinting cycles.