Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan P. Taylor is active.

Publication


Featured researches published by Jonathan P. Taylor.


Journal of the Atmospheric Sciences | 2000

Effects of Aerosols on Cloud Albedo: Evaluation of Twomey’s Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks

Andrew S. Ackerman; Owen B. Toon; Jonathan P. Taylor; D. W. Johnson; Peter V. Hobbs; Ronald J. Ferek

Abstract Airborne measurements from the Meteorological Research Flight’s Hercules C-130 and the University of Washington’s Convair C-131A during the Monterey Area Ship Track field project are used to evaluate Twomey’s analytic expression for cloud susceptibility, which describes the sensitivity of cloud albedo to changes in droplet concentrations. This expression incorporates assumptions about cloud physics, such as the independence of the cloud liquid water content and the width of the droplet size distribution on droplet concentrations. Averaged over all 69 ship track penetrations, cloud liquid water content decreased slightly and the droplet size distributions broadened from the ambient values. For the 17 cases for which albedos were measured during overflights, Twomey’s parameterization represents the trend of albedo changes with droplet concentrations remarkably well, passing through the midpoints of the considerable spread in the data. The fortuitous agreement results from compensating changes in cl...


Journal of Geophysical Research | 2001

Optical properties and direct radiative effect of Saharan dust: A case study of two Saharan dust outbreaks using aircraft data

James M. Haywood; Peter N. Francis; Martin Glew; Jonathan P. Taylor

The radiative effects of Saharan dust are measured during two flights by the Met Office C-130 aircraft off the west coast of Africa. Data from the broadband radiometers suggests that the perturbation to the top of the atmosphere net solar irradiance is as strong as -60 W m -2 -!-5 W m -2 during the dust events. In situ measurements with the nephelometer and particle soot absorption photometer suggest that the single scattering albedo is approximately 0.87 at a wavelength of 0.55 Ixm. This is in agreement with the optical parameters calculated from independent measurements of the particle size distributions combined with suitable refractive indices and Mie-scattering theory. The wavelength dependence of the extinction coefficient derived from measurements of the scattering coefficient by the nephelometer is also in excellent agreement with the calculations. Independent surface-based measurements from Cape Verde suggest that the wavelength dependence of the aerosol optical depth appears reasonable. Calculations of the downward solar irradiances within the aerosol layer are generally in good agreement with the measurements demonstrating consistency between the measurements and the modeling efforts. The terrestrial radiative effect is not detectable by the current instrumentation, though it cannot be considered negligible. These measurements suggest that satellite retrieval algorithms may misclassify the aerosol outbreak as cloud because the aerosol optical depth at 0.55 Ixm is as high as 1.15, which is in excess of the thresholds used in some cloud detection algorithms. The measurements demonstrate that this method could be used to provide an accurate benchmark for satellite-based estimates of the radiative effect of aerosols.


Journal of the Atmospheric Sciences | 2000

Drizzle Suppression in Ship Tracks

Ronald J. Ferek; Timothy J. Garrett; Peter V. Hobbs; Scott R. Strader; D. W. Johnson; Jonathan P. Taylor; K. Nielsen; Andrew S. Ackerman; Yefim L. Kogan; Qingfu Liu; Bruce A. Albrecht; David M. Babb

Abstract Although drizzle was a relatively infrequent occurrence during the Monterey Area Ship Track study, diverse measurements from several sources produced data signals consistent with a reduction in drizzle drops in stratus clouds affected by ship effluents. Concurrent increases in liquid water in the cloud droplet size range, due to redistribution from the drizzle mode, were not always observed, possibly because of the relatively small and often negligible amounts of water in the drizzle mode. Significant changes in cloud droplet size distribution, as well as reductions in drizzle flux and concentrations of drops >50-μm radius, were observed in ship tracks when drizzle was more uniformly present in the ambient cloud. Radiometric measurements showed that increased droplet concentrations in ship tracks, which resulted in reduced droplet sizes, can significantly alter the liquid water path. Radar observations indicated that the reduced reflectivities of ship tracks compared with ambient clouds may be du...


Journal of Geophysical Research | 1999

Comparison of observed and modeled direct aerosol forcing during TARFOX

Phillip Hignett; Jonathan P. Taylor; Peter N. Francis; Martin Glew

Aircraft measurements have been made of the downward and upward solar irradiance under cloud-free conditions over a range of aerosol loadings in the summer haze plume off the East Coast of the United States during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). Optical properties calculated from measured aerosol microphysical and chemical properties have been used as input to a shortwave radiative transfer model. This model was used to calculate the diurnally averaged direct aerosol forcing and to compare with values deduced from the aircraft radiative measurements. The modeled and observed forcings agree well when the aerosol has a significant absorbing component.


Journal of the Atmospheric Sciences | 2000

The Impact of Ship-Produced Aerosols on the Microstructure and Albedo of Warm Marine Stratocumulus Clouds: A Test of MAST Hypotheses 1i and 1ii

Kevin J. Noone; Ronald J. Ferek; D. W. J Ohnson; Jonathan P. Taylor; T. J. G Arrett; James G. Hudson; Christopher S. Bretherton; George E. Innis; Glendon Frick; William A. Hoppel; Lynn M. Russell; Richard F. Gasparovic; K. Nielsen; S. A. Tessmer; S. R. Osborne; Hugh A. Rand

Anomalously high reflectivity tracks in stratus and stratocumulus sheets associated with ships (known as ship tracks) are commonly seen in visible and near-infrared satellite imagery. Until now there have been only a limited number of in situ measurements made in ship tracks. The Monterey Area Ship Track (MAST) experiment, which was conducted off the coast of California in June 1994, provided a substantial dataset on ship emissions and their effects on boundary layer clouds. Several platforms, including the University of Washington C-131A aircraft, the Meteorological Research Flight C-130 aircraft, the National Aeronautics and Space Administration ER-2 aircraft, the Naval Research Laboratory airship, the Research Vessel Glorita, and dedicated U.S. Navy ships, participated in MAST in order to study processes governing the formation and maintenance of ship tracks. This paper tests the hypotheses that the cloud microphysical changes that produce ship tracks are due to (a) particulate emission from the ship’s stack and/or (b) sea-salt particles from the ship’s wake. It was found that ships powered by diesel propulsion units that emitted high concentrations of aerosols in the accumulation mode produced ship tracks. Ships that produced few particles (such as nuclear ships), or ships that produced high concentrations of particles but at sizes too small to be activated as cloud drops in typical stratocumulus (such as gas turbine and some steam-powered ships), did not produce ship tracks. Statistics and case studies, combined with model simulations, show that provided a cloud layer is susceptible to an aerosol perturbation, and the atmospheric stability enables aerosol to be mixed throughout the boundary layer, the direct emissions of cloud condensation nuclei from the stack of a diesel-powered ship is the most likely, if not the only, cause of the formation of ship tracks. There was no evidence that salt particles from ship wakes cause ship tracks.


Journal of the Atmospheric Sciences | 2000

The Role of Background Cloud Microphysics in the Radiative Formation of Ship Tracks

S. Platnick; Philip A. Durkee; K. Nielsen; Jonathan P. Taylor; Michael D. King; Ronald J. Ferek; J. W. Rottman

The authors investigate the extent to which the contrast brightness of ship tracks, that is, the relative change in observed solar reflectance, in visible and near-infrared imagery can be explained by the microphysics of the background cloud in which they form. The sensitivity of visible and near-infrared wavelengths for detecting reflectance changes in ship tracks is discussed, including the use of a modified cloud susceptibility parameter, termed the ‘‘contrast susceptibility,’’ for assessing the sensitivity of background cloud microphysics on potential track development. It is shown that the relative change in cloud reflectance for ship tracks is expected to be larger in the near-infrared than in the visible and that 3.7- mm channels, widely known to be useful for detecting tracks, have the greatest sensitivity. The usefulness of contrast susceptibility as a predictor of ship track contrast is tested with airborne and satellite remote sensing retrievals of background cloud parameters and track contrast. Retrievals are made with the high spatial resolution Moderate Resolution Imaging Spectroradiometer Airborne Simulator flown on the National Aeronautics and Space Administration’s high-altitude ER-2 aircraft, and with the larger-scale perspective of the advanced very high resolution radiometer. Observed modifications in cloud droplet effective radius, optical thickness, liquid water path, contrast susceptibility, and reflectance contrast are presented for several ship tracks formed in background clouds with both small and large droplet sizes. The remote sensing results are augmented with in situ measurements of cloud microphysics that provide data at the smaller spatial scales.


Journal of Quantitative Spectroscopy & Radiative Transfer | 2003

The ISSWG line-by-line inter-comparison experiment

S.A Tjemkes; T Patterson; R Rizzi; M.W Shephard; S.A Clough; Marco Matricardi; Joanna D. Haigh; M Höpfner; S Payan; A Trotsenko; N.A. Scott; P Rayer; Jonathan P. Taylor; Cathy Clerbaux; L. Larrabee Strow; S DeSouza-Machado; David C. Tobin; Robert O. Knuteson

Abstract To document the performance of current line-by-line radiative transfer models, a study was performed to compare the model simulations with real observations and also inter-compare the simulations themselves. Two broadband mid-IR observed spectra with high spectral resolution were analyzed. The observations were done in nadir mode, and at the same time the atmospheric state was carefully monitored. The first dataset consisted of radiance observations using the HIS interferometer during the CAMEX-1 campaign off the east coast of the USA. The second dataset consisted of observations from the ARIES interferometer collected during the Ascension Island campaign over the tropical Atlantic. These two cases are very different with the Ascension Island case being much warmer and more humid than the CAMEX case. In total 13 different research groups participated with seven different line-by-line models. The results of this study indicated that in many spectral regions the models are capable of reproducing the observations to within the observed noise. In some spectral regions relatively large differences between the simulations and observations exist.


Journal of the Atmospheric Sciences | 2000

The Appearance and Disappearance of Ship Tracks on Large Spatial Scales

James A. Coakley; Philip A. Durkee; K. Nielsen; Jonathan P. Taylor; Steven Platnick; Bruce A. Albrecht; David M. Babb; F. L. Chang; William R. Tahnk; Christopher S. Bretherton; Peter V. Hobbs

The 1-km advanced very high resolution radiometer observations from the morning, NOAA-12,and afternoon, NOAA-11, satellite passes over the coast of California during June 1994 are used to determine the altitudes, visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons are made between the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to deduce the conditions that are conducive to the appearance of ship tracks in satellite images. The results indicate that the low-level clouds must be sufficiently close to the surface for ship tracks to form. Ship tracks rarely appear in low-level clouds having altitudes greater than 1 km. The distributions of visible optical depths and cloud droplet effective radii for ambient clouds in which ship tracks are embedded are the same as those for clouds without ship tracks. Cloud droplet sizes and liquid water paths for low-level clouds do not constrain the appearance of ship tracks in the imagery. The sensitivity of ship tracks to cloud altitude appears to explain why the majority of ship tracks observed from satellites off the coast of California are found south of 35 8N. A small rise in the height of low-level clouds appears to explain why numerous ship tracks appeared on one day in a particular region but disappeared on the next, even though the altitudes of the low-level clouds were generally less than 1 km and the cloud cover was the same for both days. In addition, ship tracks are frequent when lowlevel clouds at altitudes below 1 km are extensive and completely cover large areas. The frequency of imagery pixels overcast by clouds with altitudes below 1 km is greater in the morning than in the afternoon and explains why more ship tracks are observed in the morning than in the afternoon. If the occurrence of ship tracks in satellite imagery data depends on the coupling of the clouds to the underlying boundary layer, then cloud-top altitude and the area of complete cloud cover by low-level clouds may be useful indices for this coupling.


Journal of the Atmospheric Sciences | 2000

A Case Study of Ships Forming and Not Forming Tracks in Moderately Polluted Clouds

Kevin J. Noone; Elisabeth Öström; Ronald J. Ferek; Timothy J. Garrett; Peter V. Hobbs; D. W. Johnson; Jonathan P. Taylor; Lynn M. Russell; John H. Seinfeld; Colin O’Dowd; Michael H. Smith; Philip A. Durkee; K. Nielsen; James G. Hudson; Robert A. Pockalny; Lieve De Bock; René Van Grieken; Richard F. Gasparovic; Ian M. Brooks

The effects of anthropogenic particulate emissions from ships on the radiative, microphysical, and chemical properties of moderately polluted marine stratiform clouds are examined. A case study of two ships in the same air mass is presented where one of the vessels caused a discernible ship track while the other did not. In situ measurements of cloud droplet size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to measurements of cloud radiative properties. The differences between the aerosol in the two ship plumes are discussed; these indicate that combustion-derived particles in the size range of about 0.03‐0.3-mm radius were those that caused the microphysical changes in the clouds that were responsible for the ship track. The authors examine the processes behind ship track formation in a moderately polluted marine boundary layer as an example of the effects that anthropogenic particulate pollution can have in the albedo of marine stratiform clouds.


Bulletin of the American Meteorological Society | 2008

EAQUATE: An International Experiment For Hyperspectral Atmospheric Sounding Validation

Jonathan P. Taylor; William L. Smith; Vincenzo Cuomo; Allen M. Larar; Daniel Zhou; Carmine Serio; T. Maestri; Rolando Rizzi; Stuart M. Newman; Paolo Antonelli; Stephen A. Mango; P. Di Girolamo; Francesco Esposito; Giuseppe Grieco; Donato Summa; R. Restieri; Guido Masiello; Filomena Romano; Gelsomina Pappalardo; G. Pavese; Lucia Mona; Aldo Amodeo; Gianluca Pisani

The international experiment called the European Aqua Thermodynamic Experiment (EAQUATE) was held in September 2004 in Italy and the United Kingdom to validate Aqua satellite Atmospheric Infrared Sounder (AIRS) radiance measurements and derived products with certain groundbased and airborne systems useful for validating hyperspectral satellite sounding observations. A range of flights over land and marine surfaces were conducted to coincide with overpasses of the AIRS instrument on the Earth Observing System Aqua platform. Direct radiance evaluation of AIRS using National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) and the Scanning High-Resolution Infrared Sounder has shown excellent agreement. Comparisons of level-2 retrievals of temperature and water vapor from AIRS and NAST-I validated against high-quality lidar and dropsonde data show that the 1-K/l-km and 10%/1-km requirements for temperature and water vapor (respectively) are ge...

Collaboration


Dive into the Jonathan P. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William L. Smith

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Liu

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge