Jonathan Poels
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Poels.
Fertility and Sterility | 2011
Mara Curaba; Jonathan Poels; Anne Van Langendonckt; Jacques Donnez; Christine Wyns
OBJECTIVE To assess vitrification of prepubertal human testicular tissue in vitro. DESIGN Case report. SETTING Academic research unit. PATIENT(S) Two patients (6 and 12 years of age) who were to start gonadotoxic treatment for chronic granulomatous disease and acute lymphoblastic leukemia. INTERVENTION(S) Long-term (10-day) organotypic culture performed immediately after vitrification and warming. Fresh tissue and tissue cryopreserved by slow-freezing were used as control samples. MAIN OUTCOMES MEASURE(S) Spermatogonial cell survival (MAGE-A4) and proliferation (Ki67) were evaluated by immunohistochemistry (IHC) and tubular integrity by light microscopy. RESULT(S) Qualitative analysis revealed that histologic characteristics of spermatogonia and Sertoli cells were preserved, as were cell-cell cohesion and cell adhesion to the basement membrane, in vitrified tissue as well as in frozen and fresh control samples. Survival of spermatogonia and their ability to proliferate as evidenced by IHC was also confirmed in cultured fresh, slow-frozen, and vitrified tissue. CONCLUSION(S) Vitrification, having the advantage of being a faster and more convenient method, shows promise as an alternative strategy to slow-freezing in the emerging field of immature testicular tissue cryopreservation.
Human Reproduction | 2013
Jonathan Poels; Anne Van Langendonckt; Marie-Christine Many; F. X. Wese; Christine Wyns
STUDY QUESTION Does vitrification of human immature testicular tissue (ITT) have potential benefits for future fertility preservation? Does vitrification of human ITT have potential benefits in an in vivo murine xenotransplantation model? SUMMARY ANSWER Vitrification is able to maintain proliferation capacity in spermatogonial cells after 6 months of xenografting. WHAT IS KNOWN ALREADY Controlled slow-freezing is the procedure currently applied for ITT cryobanking in clinical practice. Vitrification has been proposed as a promising technique for long-term storage of ITT, with a view to preserving spermatogonial stem cells (SSCs) for future fertility restoration in young boys suffering from cancer. After vitrification of ITT, in vitro survival of SSCs was demonstrated, but their functionality was not evaluated. STUDY DESIGN, SIZE, DURATION Ten ITT pieces issuing from 10 patients aged 2-12 years were used. Fragments of fresh tissue (serving as controls) and fresh, frozen-thawed and vitrified-warmed testicular pieces xenografted to the scrotum of nude mice for 6 months were compared. MATERIALS, SETTING, METHODS Upon graft removal, histological and immunohistochemical analyses were performed to evaluate spermatogonia (SG) (MAGE-A4), intratubular proliferation (Ki67), proliferating SG and Leydig cells (3β-HSD). The entire piece of grafted tissue was assessed in each case. MAIN RESULTS AND THE ROLE OF CHANCE Seminiferous tubules showed good integrity after cryopreservation and xenografting for 6 months in all three groups. Survival of SG and their ability to proliferate was observed by immunohistochemistry in all grafted groups. SG were able to initiate spermatogenesis, but blockage at the pachytene stage was observed. The recovery rate of SG was 3.4 ± 3.8, 4.1 ± 7.3 and 7.3 ± 6.3%, respectively, for fresh, slow-frozen and vitrified-warmed tissue after 6 months of xenografting. LIMITATIONS, REASONS FOR CAUTION The study is limited by the low availability of ITT samples of human origin. The mouse xenotransplantation model needs to be refined to study human spermatogenesis. WIDER IMPLICATIONS OF THE FINDINGS The findings of the present study have potential implications for cryobanking of ITT and fertility preservation. Spermatogonial loss recorded after fresh ITT transplantation indicates that the avascular grafting technique needs to be optimized. There are so far no convincing data justifying modification of current clinical practice for ITT storage with slow-freezing, but this study demonstrates that it is worth pursuing optimization of ITT vitrification as an alternative for preservation of SSCs. STUDY FUNDING/COMPETING INTEREST(S) The present study was supported by a grant from the Fonds National de la Recherche Scientifique de Belgique (grant Télévie N° 7. 4.572.09.F). The authors declare that there is no conflict of interest.
Theriogenology | 2012
Jonathan Poels; A. Van Langendonckt; Jean-Paul Dehoux; Jacques Donnez; Christine Wyns
This study demonstrates preservation of tissue integrity, maintenance of proliferating spermatogonia and Leydig cell functionality after vitrification and transplantation of non-human primate immature testicular tissue. The objective was to assess the potential of vitrification of non-human primate immature testicular tissue (ITT) in an in vivo xenotransplantation model. Testicular tissue was obtained from one immature rhesus monkey (Macaca mulatta) aged 4 years. Collection and vitrification of testicular tissue, followed by short-term xenografting (3 wks) to nude mice were performed to evaluate and compare vitrified/warmed and fresh tissue. Fresh ungrafted tissue was used for control purposes. Cell density and seminiferous tubule (ST) integrity were assessed by light microscopy. Presence of spermatogonia (SG) (MAGE-A4), proliferation (Ki-67) and Leydig cell (LC) functionality (3β-hydroxysteroid dehydrogenase; 3β-HSD) were evaluated by immunohistochemistry (IHC). Qualitative analysis revealed preservation of the histologic characteristics of SG and Sertoli cells (SCs), as well as cell-cell cohesion and cell adhesion to the basement membrane, in both vitrified and fresh grafted tissues. Survival of SG able to proliferate and functional LCs was confirmed by IHC in fresh and vitrified grafts. In conclusion, vitrification appears to be a promising approach, representing an alternative strategy to slow-freezing in the emerging field of ITT cryopreservation and cryobanking.
Frontiers in Surgery | 2014
Jonathan Poels; Gaël Abou-Ghannam; Sophie Herman; Anne Van Langendonckt; François-Xavier Wese; Christine Wyns
Controlled slow-freezing is the procedure currently applied for immature testicular tissue (ITT) cryobanking in clinical practice. Vitrification has been proposed as a promising alternative, with a view to better preserve the spermatogonial stem cells for future fertility restoration by autografting in young boys suffering from cancer. It appears that besides the potential influence of the cryopreservation technique used, the transplantation procedure itself has a significant impact on spermatogonial loss observed in ITT xenografts. Eighteen ITT pieces issued from 6 patients aged 2–15 years were used. Fragments of fresh tissue (serving as ungrafted controls), frozen-thawed tissue, frozen-thawed tissue supplemented with N-acetylcysteine (NAC), and frozen-thawed tissue supplemented with testosterone xenografted to nude mice for 5 days were compared. Upon graft removal, histological and immunohistochemical analyses were performed to evaluate spermatogonia, intratubular proliferation, and intrinsic and extrinsic apoptosis. A significant decrease in the integrity of intact seminiferous tubules was found in all three grafted groups. Spermatogonia were observed by immunohistochemistry in all grafted groups, with recovery rates of 67, 63, and 53%, respectively, for slow-frozen tissue, slow-frozen tissue supplemented with NAC, and slow-frozen tissue supplemented with testosterone. Apoptosis evidenced by active caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was similar in all grafts. The study is limited by the low availability of ITT samples of human origin, and no clear impact of graft supplementation was found. The mouse xenotransplantation model needs to be refined to investigate human spermatogenesis in human ITT grafts.
Human Reproduction | 2016
de Michele F; Jonathan Poels; Weerens L; Petit C; Evrard Z; Jérôme Ambroise; Gruson D; Christine Wyns
STUDY QUESTION Is an organotypic culture system able to provide the appropriate testicular microenvironment for in-vitro maturation of human immature testicular tissue (ITT)? SUMMARY ANSWER Our organotypic culture system provided a microenvironment capable of preserving seminiferous tubule (ST) integrity and Leydig cell (LC) functionality and inducing Sertoli cell (SC) maturation. WHAT IS KNOWN ALREADY Cryopreservation of human ITT is a well-established strategy to preserve fertility in prepubertal boys affected by cancer, with a view for obtaining sperm. While spermatogenesis in mice has been replicated in organotypic culture, yielding reproductively efficient spermatozoa, this process has not yet been achieved in humans. STUDY DESIGN, SIZE, DURATION The aim of this study was to in vitro mature frozen-thawed ITT. To this end, 1 mm3 tissue fragments from three prepubertal patients aged 2 (P1), 11 (P2) and 12 (P3) years were placed in organotypic culture for 139 days. Culture media, supplemented with either testosterone or hCG, were compared. PARTICIPANTS/MATERIALS, SETTING, METHODS ST integrity and tissue viability were assessed by histological score and lactate dehydrogenase (LDH) levels in supernatants. Spermatogonia (SG), proliferating cells and proliferating SG were identified by the use of MAGE-A4 and Ki67 immunohistochemical markers. Glial cell line-derived neurotrophic factor (GDNF) was used as a marker of SC functionality, while SC maturation was evaluated by androgen receptor (AR), anti-Müllerian hormone (AMH) immunohistochemistry (IHC) and AMH immunoenzymatic assay. LC functionality was determined by testosterone levels in supernatants and by 3&bgr;-hydroxysteroid dehydrogenase (3&bgr;-HSD) IHC. Apoptosis was studied by IHC with active caspases 3 and 8 and by TUNEL (terminal deoxynubocleotidyl transferase-mediated dUTP nick end labeling) analysis. MAIN RESULTS AND THE ROLE OF CHANCE Tissue viability was preserved, as demonstrated by the decrease in and stabilization of LDH release, and evolution of ST scoring, with the percentage of well-preserved STs showing no statistical differences during culture in either medium. GDNF was expressed until Day 139, demonstrating SC functionality. Moreover, a significant reduction in AMH expression and release indicated SC maturation. Testosterone concentrations in supernatants increased in both culture media, demonstrating LC functionality with paracrine interactions. SG were present up to Day 139, although the ratio between MAGE-A4-positive cells and well-preserved tubules was significantly reduced over the course of culture (P ⩽ 0.001). SCs exhibited a decreased proliferation rate over time (P ⩽ 0.05). The proliferation rate of SG remained stable until Day 64, but over the total culture period (139 days), it was found to have decreased (P ⩽ 0.05). The number of apoptotic cells did not vary during culture, nor was any statistical difference observed between the two culture media for any of the studied parameters. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Loss of SG constitutes a limitation for evaluating full functionality of spermatogonial stem cells and warrants further investigation. The scarcity of human immature material is the reason for the limited amount of tissue available for experiments, precluding more comprehensive analysis. WIDER IMPLICATIONS OF THE FINDINGS Our culture system, mimicking the peripubertal testicular microenvironment with SC maturation, LC functionality and preserved paracrine interactions, and the first to use human ITT, opens the door to a deeper understanding of niche and culture conditions to obtain sperm from cryostored ITT, with the ultimate goal of restoring fertility after gonadotoxic treatments. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by a grant from the Fond National de la Recherche Scientifique de Belgique (grant Télevie N° 7.4554.14F and N° 7.4512.15F) and the Fondation Salus Sanguinis. No conflict of interest is declared.
Stem Cell Research | 2017
Maria Grazia Giudice; Francesca de Michele; Jonathan Poels; Maxime Vermeulen; Christine Wyns
Fertility preservation in prepubertal boys facing gonadotoxic treatment is still at the experimental stage. Nevertheless cryopreservation of immature testicular tissue (ITT) obtained by small testicular biopsy is being increasingly proposed in reproductive care clinics for this purpose. Different approaches to in vivo or in vitro mature spermatogonial stem cells (SSCs) contained in ITT have been studied: autografting of testicular tissue pieces, transplantation of ones own purified germ cell suspensions, and in vitro maturation (IVM) for subsequent use of sperm for intra cytoplasmic sperm injection (ICSI). While complete spermatogenesis yielding fertile offspring has been achieved in a number of animal species after cell and tissue transplantation and IVM, no mature sperm has yet been obtained from human prepubertal SSCs. This review describes research conducted by our team and a number of others working on fertility restoration from SSCs, with special emphasis on debated concerns and progress made towards clinical application of different strategies.
Annals of Biomedical Engineering | 2017
Maxime Vermeulen; Jonathan Poels; Francesca de Michele; Anne des Rieux; Christine Wyns
New and improved oncological therapies are now able to cure more than 80% of cancer-affected children in Europe. However, such treatments are gonadotoxic and result in fertility issues, especially in boys who are not able to provide a sperm sample before starting chemo/radiotherapy because of their prepubertal state. For these boys, cryopreservation of immature testicular tissue (ITT) is the only available option, aiming to preserve spermatogonial stem cells (SSCs). Both slow-freezing and vitrification have been investigated to this end and are now applied in a clinical setting for SSC cryopreservation. Research now has to focus on methods that will allow fertility restoration. This review discusses different studies that have been conducted on ITT transplantation, including those using growth factor supplementation like free molecules, or tissue encapsulation with or without nanoparticles, as well as the possibility of developing a bioartificial testis that can be used for in vitro gamete production or in vivo transplantation.
International Journal of Molecular Sciences | 2018
Maxime Vermeulen; Federico Del Vento; Francesca de Michele; Jonathan Poels; Christine Wyns
Cryopreservation of immature testicular tissue before chemo/radiotherapy is the only option to preserve fertility of cancer-affected prepubertal boys. To avoid reintroduction of malignant cells, development of a transplantable scaffold by decellularization of pig immature testicular tissue (ITT) able to support decontaminated testicular cells could be an option for fertility restoration in these patients. We, therefore, compared decellularization protocols to produce a cytocompatible scaffold. Fragments of ITT from 15 piglets were decellularized using three protocols: sodium dodecyl sulfate (SDS)-Triton (ST), Triton-SDS-Triton (TST) and trypsin 0.05%/ethylenediaminetetraacetic acid (EDTA) 0.02%-Triton (TET) with varying detergent concentrations. All protocols were able to lower DNA levels. Collagen retention was demonstrated in all groups except ST 1%, and a significant decrease in glycosaminoglycans was observed in the TST 1% and TET 1% groups. When Sertoli cells (SCs) were cultured with decellularized tissue, no signs of cytotoxicity were detected. A higher SC proliferation rate and greater stem cell factor secretion were observed than with SCs cultured without scaffold. ST 0.01% and TET 3% conditions offered the best compromise in terms of DNA elimination and extracellular matrix (ECM) preservation, while ensuring good attachment, proliferation and functionality of human SCs. This study demonstrates the potential of using decellularized pig ITT for human testicular tissue engineering purposes.
Gynecologie Obstetrique & Fertilite | 2013
Christine Wyns; Gael Abu-Ghannam; Jonathan Poels
Preservation of reproductive health is a major concern for patient long-term quality of life. While sperm freezing has proven to be effective to preserve fertility after puberty, cryopreservation of immature testicular tissue (ITT) is emerging as a promising approach for fertility preservation in young boys. Slow-freezing (SF) is the conventional method used to preserve ITT and has resulted in the birth of mice offspring. In humans, methods to preserve ITT are still at the research stage. Controlled SF using dimethyl sulfoxide showed preservation of proliferative spermatogonia after thawing in a xenotransplantation model used to evaluate the efficiency of freezing and thawing procedures. However, spermatogonial recovery was low and normal differentiation could not be achieved. Both freezing/thawing and the environment of the xenotransplantation model may be implicated. Indeed, with SF, ice crystal formation could damage tissue and cells. For this reason, vitrification, leading to solidification of a liquid without crystallization, may be a promising alternative. ITT vitrification has been investigated in different species and shown spermatogonial survival and differentiation to the round or elongated spermatids stage. Offspring were also recently obtained after vitrification and allotransplantation in avians, confirming the potential of vitrification for fertility preservation. In humans, vitrification appears to be as efficient as SF in terms of spermatogonial survival and initiation of differentiation after xenotransplantation. However, before validation of such fertility preservation methods, completion of normal spermatogenesis and the fertilization capacity of sperm retrieved from cryopreserved and transplanted tissue should be fully investigated.
Molecular Human Reproduction | 2018
F de Michele; Jonathan Poels; Maria Grazia Giudice; F De Smedt; Jérôme Ambroise; Maxime Vermeulen; Gruson D; Christine Wyns
STUDY QUESTION How does the formation of the blood-testis barrier (BTB), as reflected by the expression of connexin 43 and claudin 11 proteins during the pubertal transition period, take place in vitro compared to samples from a large cohort of pre/peripubertal boys? SUMMARY ANSWER The BTB connexin 43 and claudin 11 expression patterns appeared to be partially achieved in organotypic culture when compared to that in samples from 71 pre/peripubertal patients. WHAT IS KNOWN ALREADY Although alterations in the protein expression patterns of the BTB, whose main components are connexin 43 and claudin 11, are known to be associated with impaired spermatogenesis in mice and adult men, there is a lack of knowledge on its formation in pre-peripubertal human tissue both in vitro and in vivo. Moreover, despite Sertoli cell (SC) maturation during long-term organotypic culture of immature testicular tissue (ITT), initiation of spermatogenesis has not yet been achieved. STUDY DESIGN, SIZE, DURATION Histological sections from 71 pre-peripubertal patients were evaluated for the formation of the BTB acting as in vivo controls according to age, SC maturation, clinical signs of puberty and germ cell differentiation. Testicular tissue fragments retrieved from three prepubertal boys were cultured in a long-term organotypic system to analyze the BTB formation and expression pattern in correlation with SC maturation. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular histological sections from 71 patients aged 0-16 years who underwent a biopsy between 2005 and 2014 to preserve their fertility before gonadotoxic treatment were examined. Immunohistochemistry (IHC) results for connexin 43 and claudin 11 as BTB markers, using a semi-quantitative score for their expression, and for Anti-Mullerian hormone (AMH), as SC maturation marker, were analyzed. Germ cell differentiation was evaluated on Hematoxylin-Eosin sections. Tanner stages at the time of biopsy were recorded from medical files. A longitudinal analysis of connexin 43, claudin 11 and AMH expressions on immunohistological sections of organotypic cultured testicular tissue from three prepubertal boys who underwent a biopsy for fertility preservation was performed. Immunostaining was evaluated at culture Days 0, 1, 3, 10, 16, 27, 32, 53, 64 and 139 for two different types of culture media. MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical control sections showed progressive maturation of SCs, as shown by the decrease in AMH expression, with increasing age (P ≤ 0.01) and the AMH expression was negatively correlated with the expression of connexin 43 and claudin 11 (P ≤ 0.01 for both proteins). Androgen receptor (AR) expression increased with age (P ≤ 0.01) and was significantly correlated with the expression of connexin 43 (P = 0.002) and claudin 11 (P = 0.03). A statistical correlation was also found between the reduction of AMH expression and both the advancement of Tanner stages (P ≤ 0.01) and the differentiation of germ cells (P ≤ 0.01). Furthermore, positive correlations between BTB formation (using connexin 43 and claudin 11 expression) and age (P ≤ 0.01 for both the proteins), higher Tanner stages (P ≤ 0.001 and P ≤ 0.01 for connexin 43 and claudin 11, respectively), and presence of more advanced germ cells (P ≤ 0.001 for both proteins) were observed. In the subanalysis on organotypic cultured ITT, where a significant decrease in AMH expression as a marker of SC maturation was already reported, we showed the onset of expression of connexin 43 at Day 16 (P ≤ 0.001) and a constant expression of claudin 11 from Days 0 to 139, for all three patients, without differences between the two types of culture media. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Accessibility of prepubertal human testicular tissue is a major limiting factor to the analysis of cultured tissue samples from a wide number of patients, as would be needed to assess the in vitro development of the BTB according to the age. The impossibility of performing longitudinal studies on in vivo BTB formation in the same patient prevents a comparison of the time needed to achieve effective BTB formation and protein expression patterns in vivo and in vitro. WIDER IMPLICATIONS OF THE FINDINGS To the best of our knowledge, this is the first report describing the expression of two BTB proteins in samples from a cohort of prepubertal and peripubertal boys, for the in vivo pattern, and in cultured ITT from a few prepubertal boys, for the in vitro evaluation. Since the formation of this barrier is essential for spermatogenesis and because little is known about its protein expression patterns and development in humans, a deeper understanding of the testicular microenvironment is essential to improve ITT in vitro culture conditions. The final aim is to restore fertility by acheiving in vitro differentiation of spermatogonial stem cells, using cryopreserved ITT collected before gonadotoxic therapies. STUDY FUNDING AND COMPETING INTEREST(S) Funding was received from Fonds National de la Recherche Scientifique de Belgique (Grant Télevie Nos. 7.4554.14F and 7.6511.16) and Fondation Salus Sanguinis. No conflict of interest has to be disclosed.