Jonathan Prance
Lancaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Prance.
Physical Review Letters | 2011
C. B. Simmons; Jonathan Prance; B. J. Van Bael; Teck Seng Koh; Zhan Shi; D. E. Savage; Max G. Lagally; Robert Joynt; Mark Friesen; S. N. Coppersmith; M. A. Eriksson
The remarkable properties of silicon have made it the central material for the fabrication of current microelectronic devices. Silicon’s fundamental properties also make it an attractive option for the development of devices for spintronics [1] and quantum information processing [2–5]. The ability to manipulate and measure spins of single electrons is crucial for these applications. Here we report the manipulation and measurement of a single spin in a quantum dot fabricated in a silicon/silicon-germanium heterostructure. We demonstrate that the rate of loading of electrons into the device can be tuned over an order of magnitude using a gate voltage, that the spin state of the loaded electron depends systematically on the loading voltage level, and that this tunability arises because electron spins can be loaded through excited orbital states of the quantum dot. The longitudinal spin relaxation time T1 is measured using single-shot pulsed techniques [6] and found to be ∼ 3 seconds at a field of 1.85 Tesla. The demonstration of single spin measurement as well as a long spin relaxation time and tunability of the loading are all favorable properties for spintronics and quantum information processing applications. Silicon is a material in which spin qubits are expected to have long coherence times, thanks to the predominance of a spin-zero nuclear isotope and relatively weak spin-orbit coupling. However, silicon quantum dots have yet to demonstrate the reproducibility and controllability achieved in gallium arsenide devices [7–10]. Here, we demonstrate the control and manipulation of spin states of single electrons in a silicon/silicon-germanium (Si/SiGe) quantum dot and report the first single-shot measurements of the longitudinal spin relaxation time T1 in such devices. We also show that the presence of a relatively low-lying spin-split orbital excited state in the dot can be exploited to increase the speed and tunability of the loading of spins into the dot. Our results demonstrate that Si/SiGe quantum dots can be fabricated that are sufficiently tunable to enable single-electron manipulation and measurement, and that long spin relaxation times are consistent with the orbital and/or valley excitation energies in these systems. The measurements we report were performed on a gate-defined quantum dot with the gate configuration shown in Fig. 1a, tuned to be in the single-dot regime. The dot is measured at low temperature and in a parallel magnetic field. As shown in Fig. 1b, an electron can be loaded into one of four energy eigenstates; we denote 2.0 1.0 0.0 B (T) -0.158 -0.152
Physical Review Letters | 2012
Zhan Shi; C. B. Simmons; Jonathan Prance; John King Gamble; Teck Seng Koh; Yun-Pil Shim; Xuedong Hu; D. E. Savage; Max G. Lagally; M. A. Eriksson; Mark Friesen; S. N. Coppersmith
We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers S(2)=3/4 (S=1/2) and S(z)=-1/2, with the two different states being singlet and triplet in the doubly occupied dot. Gate operations can be implemented electrically and the qubit is highly tunable, enabling fast implementation of one- and two-qubit gates in a simpler geometry and with fewer operations than in other proposed quantum dot qubit architectures with fast operations. Moreover, the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.
Nature Physics | 2016
M. Ben Shalom; Mengjian Zhu; V. I. Fal’ko; Artem Mishchenko; Andrey V. Kretinin; K. S. Novoselov; Colin R. Woods; Kenji Watanabe; Takashi Taniguchi; A. K. Geim; Jonathan Prance
Josephson junctions based on graphene exhibit tunable proximity effects. The appearance of superconducting states when changing magnetic field and carrier concentration has now been investigated—some proximity effect survives for fields above 1 T.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Xian Wu; Daniel Ward; Jonathan Prance; D. H. Kim; John King Gamble; R. T. Mohr; Zhan Shi; D. E. Savage; M. G. Lagally; Mark Friesen; S. N. Coppersmith; M. A. Eriksson
Significance Qubits, the quantum-mechanical analog of classical bits, are the fundamental building blocks of quantum computers, which have the potential to solve some problems that are intractable using classical computation. This paper reports the fabrication and operation of a qubit in a double-quantum dot in a silicon/silicon–germanium (Si/SiGe) heterostructure in which the qubit states are singlet and triplet states of two electrons. The significant advance over previous work is that a proximal micromagnet is used to create a large local magnetic field difference between the two sides of the quantum dot, which increases the manipulability significantly without introducing measurable noise. The qubit is the fundamental building block of a quantum computer. We fabricate a qubit in a silicon double-quantum dot with an integrated micromagnet in which the qubit basis states are the singlet state and the spin-zero triplet state of two electrons. Because of the micromagnet, the magnetic field difference ΔB between the two sides of the double dot is large enough to enable the achievement of coherent rotation of the qubit’s Bloch vector around two different axes of the Bloch sphere. By measuring the decay of the quantum oscillations, the inhomogeneous spin coherence time T2* is determined. By measuring T2* at many different values of the exchange coupling J and at two different values of ΔB, we provide evidence that the micromagnet does not limit decoherence, with the dominant limits on T2* arising from charge noise and from coupling to nuclear spins.
Physical Review Letters | 2012
Jonathan Prance; Zhan Shi; C. B. Simmons; D. E. Savage; M. G. Lagally; L. R. Schreiber; L. M. K. Vandersypen; Mark Friesen; Robert Joynt; S. N. Coppersmith; M. A. Eriksson
We investigate the lifetime of two-electron spin states in a few-electron Si/SiGe double dot. At the transition between the (1,1) and (0,2) charge occupations, Pauli spin blockade provides a readout mechanism for the spin state. We use the statistics of repeated single-shot measurements to extract the lifetimes of multiple states simultaneously. When the magnetic field is zero, we find that all three triplet states have equal lifetimes, as expected, and this time is ~10 ms. When the field is nonzero, the T(0) lifetime is unchanged, whereas the T- lifetime increases monotonically with the field, reaching 3 sec at 1 T.
Nature Communications | 2014
Zhan Shi; C. B. Simmons; Daniel Ward; Jonathan Prance; Xian Wu; Teck Seng Koh; John King Gamble; D. E. Savage; Max G. Lagally; Mark Friesen; S. N. Coppersmith; M. A. Eriksson
An important goal in the manipulation of quantum systems is the achievement of many coherent oscillations within the characteristic dephasing time T2(*). Most manipulations of electron spins in quantum dots have focused on the construction and control of two-state quantum systems, or qubits, in which each quantum dot is occupied by a single electron. Here we perform quantum manipulations on a system with three electrons per double quantum dot. We demonstrate that tailored pulse sequences can be used to induce coherent rotations between three-electron quantum states. Certain pulse sequences yield coherent oscillations fast enough that more than 100 oscillations are visible within a T2(*) time. The minimum oscillation frequency we observe is faster than 5 GHz. The presence of the third electron enables very fast rotations to all possible states, in contrast to the case when only two electrons are used, in which some rotations are slow.
Physical Review B | 2013
Zhan Shi; C. B. Simmons; Daniel Ward; Jonathan Prance; R. T. Mohr; Teck Seng Koh; John King Gamble; Xian Wu; D. E. Savage; M. G. Lagally; Mark Friesen; S. N. Coppersmith; M. A. Eriksson
Fast quantum oscillations of a charge qubit in a double quantum dot fabricated in a Si/SiGe heterostructure are demonstrated and characterized experimentally. The measured inhomogeneous dephasing time T ∗ 2 ranges from 127 ps to ∼2.1 ns; it depends substantially on how the energy difference of the the two qubit states varies with external voltages, consistent with a decoherence process that is dominated by detuning noise (charge noise that changes the asymmetry of the qubit’s double-well potential). In the regime with the shortest T ∗ 2 , applying a charge-echo pulse sequence increases the measured inhomogeneous decoherence time from 127 ps to 760 ps, demonstrating that low-frequency noise processes are an important dephasing mechanism.
Science | 2006
R. Crook; Jonathan Prance; K. J. Thomas; S. J. Chorley; I. Farrer; D. A. Ritchie; M. Pepper; C. G. Smith
We present data from an induced gallium arsenide (GaAs) quantum wire that exhibits an additional conductance plateau at 0.5(2e2/h), where e is the charge of an electron and h is Plancks constant, in zero magnetic field. The plateau was most pronounced when the potential landscape was tuned to be symmetric by using low-temperature scanning-probe techniques. Source-drain energy spectroscopy and temperature response support the hypothesis that the origin of the plateau is the spontaneous spin-polarization of the transport electrons: a ferromagnetic phase. Such devices may have applications in the field of spintronics to either generate or detect a spin-polarized current without the complications associated with external magnetic fields or magnetic materials.
Applied Physics Letters | 2011
Zhan Shi; C. B. Simmons; Jonathan Prance; John King Gamble; Mark Friesen; Don Savage; Max G. Lagally; S. N. Coppersmith; M. A. Eriksson
We measure the excited-state spectrum of a Si/SiGe quantum dot as a function of in-plane magnetic field and identify the spin of the lowest three eigenstates in an effective two-electron regime. We extract the singlet-triplet splitting, an essential parameter for spin qubits, from the data. We find it to be tunable by lateral displacement of the dot, which is realized by changing two gate voltages on opposite sides of the device. We present calculations showing the data are consistent with a spectrum in which the first excited state of the dot is a valley-orbit state.
Nature Communications | 2017
Mengjian Zhu; Andrey V. Kretinin; Michael Thompson; Denis A. Bandurin; S. Hu; Geliang Yu; John Birkbeck; Artem Mishchenko; Ivan J. Vera-Marun; Kenji Watanabe; T. Taniguchi; Marco Polini; Jonathan Prance; K. S. Novoselov; A. K. Geim; M. Ben Shalom
An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra.