Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan R. Karr is active.

Publication


Featured researches published by Jonathan R. Karr.


Cell | 2012

A Whole-Cell Computational Model Predicts Phenotype from Genotype

Jonathan R. Karr; Jayodita C. Sanghvi; Derek N. Macklin; Miriam V. Gutschow; Jared M. Jacobs; Benjamin Bolival; Nacyra Assad-Garcia; John I. Glass; Markus W. Covert

Understanding how complex phenotypes arise from individual molecules and their interactions is a primary challenge in biology that computational approaches are poised to tackle. We report a whole-cell computational model of the life cycle of the human pathogen Mycoplasma genitalium that includes all of its molecular components and their interactions. An integrative approach to modeling that combines diverse mathematics enabled the simultaneous inclusion of fundamentally different cellular processes and experimental measurements. Our whole-cell model accounts for all annotated gene functions and was validated against a broad range of data. The model provides insights into many previously unobserved cellular behaviors, including in vivo rates of protein-DNA association and an inverse relationship between the durations of DNA replication initiation and replication. In addition, experimental analysis directed by model predictions identified previously undetected kinetic parameters and biological functions. We conclude that comprehensive whole-cell models can be used to facilitate biological discovery.


Bioinformatics | 2008

Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli

Markus W. Covert; Nan Xiao; Tiffany J. Chen; Jonathan R. Karr

MOTIVATION The effort to build a whole-cell model requires the development of new modeling approaches, and in particular, the integration of models for different types of processes, each of which may be best described using different representation. Flux-balance analysis (FBA) has been useful for large-scale analysis of metabolic networks, and methods have been developed to incorporate transcriptional regulation (regulatory FBA, or rFBA). Of current interest is the integration of these approaches with detailed models based on ordinary differential equations (ODEs). RESULTS We developed an approach to modeling the dynamic behavior of metabolic, regulatory and signaling networks by combining FBA with regulatory Boolean logic, and ordinary differential equations. We use this approach (called integrated FBA, or iFBA) to create an integrated model of Escherichia coli which combines a flux-balance-based, central carbon metabolic and transcriptional regulatory model with an ODE-based, detailed model of carbohydrate uptake control. We compare the predicted Escherichia coli wild-type and single gene perturbation phenotypes for diauxic growth on glucose/lactose and glucose/glucose-6-phosphate with that of the individual models. We find that iFBA encapsulates the dynamics of three internal metabolites and three transporters inadequately predicted by rFBA. Furthermore, we find that iFBA predicts different and more accurate phenotypes than the ODE model for 85 of 334 single gene perturbation simulations, as well for the wild-type simulations. We conclude that iFBA is a significant improvement over the individual rFBA and ODE modeling paradigms. AVAILABILITY All MATLAB files used in this study are available at http://www.simtk.org/home/ifba/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


PLOS Computational Biology | 2015

Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models

Jonathan R. Karr; Alex H. Williams; Jeremy Zucker; Andreas Raue; Bernhard Steiert; Jens Timmer; Clemens Kreutz; Simon Wilkinson; Brandon A. Allgood; Brian M. Bot; Bruce Hoff; Michael R. Kellen; Markus W. Covert; Gustavo Stolovitzky; Pablo Meyer

Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.


Chaos | 2013

Towards a whole-cell modeling approach for synthetic biology.

Oliver Purcell; Bonny Jain; Jonathan R. Karr; Markus W. Covert; Thimothy K. Lu

Despite rapid advances over the last decade, synthetic biology lacks the predictive tools needed to enable rational design. Unlike established engineering disciplines, the engineering of synthetic gene circuits still relies heavily on experimental trial-and-error, a time-consuming and inefficient process that slows down the biological design cycle. This reliance on experimental tuning is because current modeling approaches are unable to make reliable predictions about the in vivo behavior of synthetic circuits. A major reason for this lack of predictability is that current models view circuits in isolation, ignoring the vast number of complex cellular processes that impinge on the dynamics of the synthetic circuit and vice versa. To address this problem, we present a modeling approach for the design of synthetic circuits in the context of cellular networks. Using the recently published whole-cell model of Mycoplasma genitalium, we examined the effect of adding genes into the host genome. We also investigated how codon usage correlates with gene expression and find agreement with existing experimental results. Finally, we successfully implemented a synthetic Goodwin oscillator in the whole-cell model. We provide an updated software framework for the whole-cell model that lays the foundation for the integration of whole-cell models with synthetic gene circuit models. This software framework is made freely available to the community to enable future extensions. We envision that this approach will be critical to transforming the field of synthetic biology into a rational and predictive engineering discipline.


Current Opinion in Microbiology | 2015

The principles of whole-cell modeling

Jonathan R. Karr; Koichi Takahashi; Akira Funahashi

Whole-cell models which comprehensively predict how phenotypes emerge from genotype promise to enable rational bioengineering and precision medicine. Here, we outline the key principles of whole-cell modeling which have emerged from our work developing bacterial whole-cell models: single-cellularity; functional, genetic, molecular, and temporal completeness; biophysical realism including temporal dynamics and stochastic variation; species-specificity; and model integration and reproducibility. We also outline the whole-cell model construction process, highlighting existing resources. Numerous challenges remain to achieving fully complete models including developing new experimental tools to more completely characterize cells and developing a strong theoretical understanding of hybrid mathematics. Solving these challenges requires collaboration among computational and experimental biologists, biophysicists, biochemists, applied mathematicians, computer scientists, and software engineers.


Nature Methods | 2013

Accelerated discovery via a whole-cell model

Jayodita C. Sanghvi; Sergi Regot; Silvia Carrasco; Jonathan R. Karr; Miriam V. Gutschow; Benjamin Bolival; Markus W. Covert

To test the promise of whole-cell modeling to facilitate scientific inquiry, we compared growth rates simulated in a whole-cell model with experimental measurements for all viable single-gene disruption Mycoplasma genitalium strains. Discrepancies between simulations and experiments led to predictions about kinetic parameters of specific enzymes that we subsequently validated. These findings represent, to our knowledge, the first application of whole-cell modeling to accelerate biological discovery.


Nucleic Acids Research | 2012

WholeCellKB: model organism databases for comprehensive whole-cell models

Jonathan R. Karr; Jayodita C. Sanghvi; Derek N. Macklin; Abhishek Arora; Markus W. Covert

Whole-cell models promise to greatly facilitate the analysis of complex biological behaviors. Whole-cell model development requires comprehensive model organism databases. WholeCellKB (http://wholecellkb.stanford.edu) is an open-source web-based software program for constructing model organism databases. WholeCellKB provides an extensive and fully customizable data model that fully describes individual species including the structure and function of each gene, protein, reaction and pathway. We used WholeCellKB to create WholeCellKB-MG, a comprehensive database of the Gram-positive bacterium Mycoplasma genitalium using over 900 sources. WholeCellKB-MG is extensively cross-referenced to existing resources including BioCyc, KEGG and UniProt. WholeCellKB-MG is freely accessible through a web-based user interface as well as through a RESTful web service.


IEEE Transactions on Biomedical Engineering | 2016

Toward Community Standards and Software for Whole-Cell Modeling

Dagmar Waltemath; Jonathan R. Karr; Frank Bergmann; Vijayalakshmi Chelliah; Michael Hucka; Marcus Krantz; Wolfram Liebermeister; Pedro Mendes; Chris J. Myers; Pınar Pir; Begum Alaybeyoglu; Naveen K. Aranganathan; Kambiz Baghalian; Arne T. Bittig; Paulo E Pinto Burke; Matteo Cantarelli; Yin Hoon Chew; Rafael S. Costa; Joseph Cursons; Tobias Czauderna; Arthur P. Goldberg; Harold F. Gómez; Jens Hahn; Tuure Hameri; Daniel Federico Hernandez Gardiol; Denis Kazakiewicz; Ilya Kiselev; Vincent Knight-Schrijver; Christian Knüpfer; Matthias König

Objective: Whole-cell (WC) modeling is a promising tool for biological research, bioengineering, and medicine. However, substantial work remains to create accurate comprehensive models of complex cells. Methods: We organized the 2015 Whole-Cell Modeling Summer School to teach WC modeling and evaluate the need for new WC modeling standards and software by recoding a recently published WC model in the Systems Biology Markup Language. Results: Our analysis revealed several challenges to representing WC models using the current standards. Conclusion: We, therefore, propose several new WC modeling standards, software, and databases. Significance: We anticipate that these new standards and software will enable more comprehensive models.


Database | 2014

WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions

Jonathan R. Karr; Nolan C. Phillips; Markus W. Covert

Mechanistic ‘whole-cell’ models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. Database URL: http://www.wholecellsimdb.org Source code repository URL: http://github.com/CovertLab/WholeCellSimDB


BMC Bioinformatics | 2013

WholeCellViz: data visualization for whole-cell models

Ruby B. Lee; Jonathan R. Karr; Markus W. Covert

BackgroundWhole-cell models promise to accelerate biomedical science and engineering. However, discovering new biology from whole-cell models and other high-throughput technologies requires novel tools for exploring and analyzing complex, high-dimensional data.ResultsWe developed WholeCellViz, a web-based software program for visually exploring and analyzing whole-cell simulations. WholeCellViz provides 14 animated visualizations, including metabolic and chromosome maps. These visualizations help researchers analyze model predictions by displaying predictions in their biological context. Furthermore, WholeCellViz enables researchers to compare predictions within and across simulations by allowing users to simultaneously display multiple visualizations.ConclusionWholeCellViz was designed to facilitate exploration, analysis, and communication of whole-cell model data. Taken together, WholeCellViz helps researchers use whole-cell model simulations to drive advances in biology and bioengineering.

Collaboration


Dive into the Jonathan R. Karr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur P. Goldberg

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge