Jonathan R. Manning
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan R. Manning.
European Heart Journal | 2010
Keith A.A. Fox; Kathryn F. Carruthers; Donald R. Dunbar; Catriona Graham; Jonathan R. Manning; Herbert De Raedt; Ian Buysschaert; Diether Lambrechts; Frans Van de Werf
AIM To define the long-term outcome of patients presenting with acute coronary syndrome [ST-segment elevation myocardial infarction (STEMI), and non-STEMI and unstable angina acute coronary syndrome (ACS) without biomarker elevation] and to test the hypothesis that the GRACE (Global Registry of Acute Coronary Events) risk score predicts mortality and death/MI at 5 years. METHODS AND RESULTS In the GRACE long-term study, UK and Belgian centres prospectively recruited and followed ACS patients for a median of 5 years (1797 days). Primary outcome events: deaths, cardiovascular deaths (CVDs) and MIs. Secondary events: stroke and re-hospitalization for ACS. There were 736 deaths, 19.8% (482 CVDs, 13%) and 347 (9.3%) MIs (>24 h), 261 strokes (7.7%), and 452 (17%) subsequent revascularizations. Rehospitalization was common: average 1.6 per patient; 31.2% had >1 admission, 9.2% had 5+ admissions. These events were despite high rates of guideline indicated therapies. The GRACE score was highly predictive of all-cause death, CVD, and CVD/MI at 5 years (death: χ(2) likelihood ratio 632; Wald 709.9, P< 0.0001, C-statistic 0.77; for CVD C-statistic 0.75, P < 0.0001; CVD/MI C-statistic 0.70, P < 0.0001). Compared with the low-risk GRACE stratum (ESC Guideline criteria), those with intermediate [hazard ratio (HR) 2.14, 95% CI 1.63, 2.81] and those with high-risk (HR 6.36, 95% CI 4.95, 8.16) had two- and six-fold higher risk of later death (Cox proportional hazard). A landmark analysis after 6 months confirmed that the GRACE score predicted long-term death (χ(2) likelihood ratio 265.4; Wald 289.5, P < 0.0001). Although in-hospital rates of death and MI are higher following STEMI, the cumulative rates of death (and CVD) were not different, by class of ACS, over the duration of follow-up (Wilcoxon = 1.5597, df = 1, P = 0.21). At 5 years after STEMI 269/1403 (19%) died; after non-STEMI 262/1170 (22%) after unstable angina (UA) 149/850 (17%). Two-thirds (68%) of STEMI deaths occurred after initial hospital discharge, but this was 86% for non-STEMI and 97% for UA. CONCLUSION The GRACE risk score predicts early and 5 year death and CVD/MI. Five year morbidity and mortality are as high in patients following non-ST MI and UA as seen following STEMI. Their morbidity burden is high (MI, stroke, readmissions) and the substantial late mortality in non-STE ACS is under-recognized. The findings highlight the importance of pursuing novel approaches to diminish long-term risk.
Respiratory Research | 2015
Roberto Rabinovich; Ellen Drost; Jonathan R. Manning; Donald R. Dunbar; MaCarmen Díaz-Ramos; Ramzi Lakhdar; Ricardo Bastos; William MacNee
BackgroundChronic Obstructive Pulmonary Disease (COPD) has significant systemic effects beyond the lungs amongst which muscle wasting is a prominent contributor to exercise limitation and an independent predictor of morbidity and mortality. The molecular mechanisms leading to skeletal muscle dysfunction/wasting are not fully understood and are likely to be multi-factorial. The need to develop therapeutic strategies aimed at improving skeletal muscle dysfunction/wasting requires a better understanding of the molecular mechanisms responsible for these abnormalities. Microarrays are powerful tools that allow the investigation of the expression of thousands of genes, virtually the whole genome, simultaneously. We aim at identifying genes and molecular pathways involved in skeletal muscle wasting in COPD.MethodsWe assessed and compared the vastus lateralis transcriptome of COPD patients with low fat free mass index (FFMI) as a surrogate of muscle mass (COPDL) (FEV1 30 ± 3.6%pred, FFMI 15 ± 0.2 Kg.m−2) with patients with COPD and normal FFMI (COPDN) (FEV1 44 ± 5.8%pred, FFMI 19 ± 0.5 Kg.m−2) and a group of age and sex matched healthy controls (C) (FEV1 95 ± 3.9%pred, FFMI 20 ± 0.8 Kg.m−2) using Agilent Human Whole Genome 4x44K microarrays. The altered expression of several of these genes was confirmed by real time TaqMan PCR. Protein levels of P21 were assessed by immunoblotting.ResultsA subset of 42 genes was differentially expressed in COPDL in comparison to both COPDN and C (PFP < 0.05; −1.5 ≥ FC ≥ 1.5). The altered expression of several of these genes was confirmed by real time TaqMan PCR and correlated with different functional and structural muscle parameters. Five of these genes (CDKN1A, GADD45A, PMP22, BEX2, CGREF1, CYR61), were associated with cell cycle arrest and growth regulation and had been previously identified in studies relating muscle wasting and ageing. Protein levels of CDKN1A, a recognized marker of premature ageing/cell cycle arrest, were also found to be increased in COPDL.ConclusionsThis study provides evidence of differentially expressed genes in peripheral muscle in COPD patients corresponding to relevant biological processes associated with skeletal muscle wasting and provides potential targets for future therapeutic interventions to prevent loss of muscle function and mass in COPD.
Cell Death & Differentiation | 2015
E A Rog-Zielinska; M-A Craig; Jonathan R. Manning; R V Richardson; Graeme J. Gowans; Donald R. Dunbar; K Gharbi; C J Kenyon; M C Holmes; Dg Hardie; Gl Smith; Karen E. Chapman
Glucocorticoid levels rise dramatically in late gestation to mature foetal organs in readiness for postnatal life. Immature heart function may compromise survival. Cardiomyocyte glucocorticoid receptor (GR) is required for the structural and functional maturation of the foetal heart in vivo, yet the molecular mechanisms are largely unknown. Here we asked if GR activation in foetal cardiomyocytes in vitro elicits similar maturational changes. We show that physiologically relevant glucocorticoid levels improve contractility of primary-mouse-foetal cardiomyocytes, promote Z-disc assembly and the appearance of mature myofibrils, and increase mitochondrial activity. Genes induced in vitro mimic those induced in vivo and include PGC-1α, a critical regulator of cardiac mitochondrial capacity. SiRNA-mediated abrogation of the glucocorticoid induction of PGC-1α in vitro abolished the effect of glucocorticoid on myofibril structure and mitochondrial oxygen consumption. Using RNA sequencing we identified a number of transcriptional regulators, including PGC-1α, induced as primary targets of GR in foetal cardiomyocytes. These data demonstrate that PGC-1α is a key mediator of glucocorticoid-induced maturation of foetal cardiomyocyte structure and identify other candidate transcriptional regulators that may play critical roles in the transition of the foetal to neonatal heart.
Journal of The American Society of Nephrology | 2012
Bryan R. Conway; Jillian Rennie; Matthew A. Bailey; Donald R. Dunbar; Jonathan R. Manning; Christopher Bellamy; Jeremy Hughes; John J. Mullins
Rodent models exhibit only the earliest features of human diabetic nephropathy, which limits our ability to investigate new therapies. Hypertension is a prerequisite for advanced diabetic nephropathy in humans, so its rarity in typical rodent models may partly explain their resistance to nephropathy. Here, we used the Cyp1a1mRen2 rat, in which the murine renin-2 gene is incorporated under the Cytochrome P4501a1 promoter. In this transgenic strain, administration of low-dose dietary indole-3-carbinol induces moderate hypertension. In the absence of hypertension, streptozotocin-induced diabetes resulted in a 14-fold increase in albuminuria but only mild changes in histology and gene expression despite 28 weeks of marked hyperglycemia. In the presence of induced hypertension, hyperglycemia resulted in a 500-fold increase in albuminuria, marked glomerulosclerosis and tubulointerstitial fibrosis, and induction of many of the same pathways that are upregulated in the tubulointerstitium in human diabetic nephropathy. In conclusion, although induction of diabetes alone in rodents has limited utility to model human diabetic nephropathy, renin-dependent hypertension and hyperglycemia synergize to recapitulate many of the clinical, histological, and gene expression changes observed in humans.
Translational Psychiatry | 2014
Batbayar Khulan; Jonathan R. Manning; Donald R. Dunbar; Jonathan R. Seckl; Katri Räikkönen; Johan G. Eriksson; Amanda J. Drake
Early-life stress (ELS) is known to be associated with an increased risk of neuropsychiatric and cardiometabolic disease in later life. One of the potential mechanisms underpinning this is through effects on the epigenome, particularly changes in DNA methylation. Using a well-phenotyped cohort of 83 men from the Helsinki Birth Cohort Study, who experienced ELS in the form of separation from their parents during childhood, and a group of 83 matched controls, we performed a genome-wide analysis of DNA methylation in peripheral blood. We found no differences in DNA methylation between men who were separated from their families and non-separated men; however, we did identify differences in DNA methylation in association with the development of at least mild depressive symptoms over the subsequent 5–10 years. Notably, hypomethylation was identified at a number of genes with roles in brain development and/or function in association with depressive symptoms. Pathway analysis revealed an enrichment of DNA methylation changes in pathways associated with development and morphogenesis, DNA and transcription factor binding and programmed cell death. Our results support the concept that DNA methylation differences may be important in the pathogenesis of psychiatric disease.
Kidney International | 2016
Boris Betz; Sara Jenks; Andrew D. Cronshaw; Douglas J. Lamont; Carolynn Cairns; Jonathan R. Manning; Jane Goddard; David J. Webb; John J. Mullins; Jeremy Hughes; Stela McLachlan; Mark W. J. Strachan; Jackie F. Price; Bryan R. Conway
Many diabetic patients suffer from declining renal function without developing albuminuria. To identify alternative biomarkers for diabetic nephropathy (DN) we performed urinary peptidomic analysis in a rodent model in which hyperglycemia and hypertension synergize to promote renal pathologic changes consistent with human DN. We identified 297 increased and 15 decreased peptides in the urine of rats with DN compared with controls, including peptides derived from proteins associated with DN and novel candidate biomarkers. We confirmed by ELISA that one of the parent proteins, urinary epidermal growth factor (uEGF), was more than 2-fold reduced in rats with DN in comparison with controls. To assess the clinical utility of uEGF we examined renal outcomes in 642 participants from the Edinburgh Type 2 Diabetes Study who were normoalbuminuric and had preserved renal function at baseline. After adjustment for established renal risk factors, a lower uEGF to creatinine ratio was associated with new-onset estimated glomerular filtration rate less than 60 ml/min per 1.73m(2) (odds ratio 0.48; 95% confidence interval, 0.26-0.90), rapid (over 5% per annum) decline in renal function (odds ratio 0.44; 95% confidence interval, 0.27-0.72) or the composite of both outcomes (odds ratio 0.38; 95% confidence interval, 0.24-0.62). Thus, the utility of a low uEGF to creatinine ratio as a biomarker of progressive decline in renal function in normoalbuminuric patients should be assessed in additional populations.
Histopathology | 2013
Christopher Bellamy; R Scott Maxwell; Sandrine Prost; Ijeoma A Azodo; James J Powell; Jonathan R. Manning
Aims: To determine the utility of immunophenotyping for classification of hepatocellular adenomas resected at one Scottish centre.
Physiological Genomics | 2010
Jonathan R. Manning; Matthew A. Bailey; Dinesh C. Soares; Donald R. Dunbar; John J. Mullins
11beta-Hydroxysteroid dehydrogenase type 2 (11betaHSD2) is a short-chain dehydrogenase/reductase (SDR) responsible for inactivating cortisol and preventing its binding to the mineralocorticoid receptor (MR). Nonfunctional mutations in HSD11B2, the gene encoding 11betaHSD2, cause the hypertensive syndrome of apparent mineralocorticoid excess (AME). Like other such Mendelian disorders, AME is rare but has nevertheless helped to illuminate principles fundamental to the regulation of blood pressure. Furthermore, polymorphisms in HSD11B2 have been associated with salt sensitivity, a major risk factor for cardiovascular mortality. It is therefore highly likely that sequence variation in HSD11B2, having subtle functional ramifications, will affect blood pressure in the wider population. In this study, a three-dimensional homology model of 11betaHSD2 was created and used to hypothesize the functional consequences in terms of protein structure of published mutations in HSD11B2. This approach underscored the strong genotype-phenotype correlation of AME: severe forms of the disease, associated with little in vivo enzyme activity, arise from mutations occurring in invariant alignment positions. These were predicted to exert gross structural changes in the protein. In contrast, those mutations causing a mild clinical phenotype were in less conserved regions of the protein that were predicted to be relatively more tolerant to substitution. Finally, a number of pathogenic mutations are shown to be associated with regions predicted to participate in dimer formation, and in protein stabilization, which may therefore suggest molecular mechanisms of disease.
Translational Psychiatry | 2016
Sarah A. Sparrow; Jonathan R. Manning; Jessy Cartier; Devasuda Anblagan; Mark E. Bastin; Chinthika Piyasena; Rozi Pataky; Emma Moore; Scott Semple; Alastair Graham Wilkinson; Margaret J. Evans; Amanda J. Drake; James P. Boardman
DNA methylation (DNAm) plays a determining role in neural cell fate and provides a molecular link between early-life stress and neuropsychiatric disease. Preterm birth is a profound environmental stressor that is closely associated with alterations in connectivity of neural systems and long-term neuropsychiatric impairment. The aims of this study were to examine the relationship between preterm birth and DNAm, and to investigate factors that contribute to variance in DNAm. DNA was collected from preterm infants (birth<33 weeks gestation) and healthy controls (birth>37 weeks), and a genome-wide analysis of DNAm was performed; diffusion magnetic resonance imaging (dMRI) data were acquired from the preterm group. The major fasciculi were segmented, and fractional anisotropy, mean diffusivity and tract shape were calculated. Principal components (PC) analysis was used to investigate the contribution of MRI features and clinical variables to variance in DNAm. Differential methylation was found within 25 gene bodies and 58 promoters of protein-coding genes in preterm infants compared with controls; 10 of these have neural functions. Differences detected in the array were validated with pyrosequencing. Ninety-five percent of the variance in DNAm in preterm infants was explained by 23 PCs; corticospinal tract shape associated with 6th PC, and gender and early nutritional exposure associated with the 7th PC. Preterm birth is associated with alterations in the methylome at sites that influence neural development and function. Differential methylation analysis has identified several promising candidate genes for understanding the genetic/epigenetic basis of preterm brain injury.
Lipids in Health and Disease | 2015
Emily Yeung; Philipp Treskes; Sarah F. Martin; Jonathan R. Manning; Donald R. Dunbar; Sophie M. Rogers; Thierry Le Bihan; K. Ann Lockman; Steven D. Morley; Peter C. Hayes; Leonard J. Nelson; John Plevris
BackgroundCardiovascular disease (CVD) remains the major cause of excess mortality in patients with non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the individual contribution of NAFLD to CVD risk factors in the absence of pathogenic influences from other comorbidities often found in NAFLD patients, by using an established in-vitro model of hepatic steatosis.MethodsHistopathological events in non-alcoholic fatty liver disease were recapitulated by focused metabolic nutrient overload of hepatoblastoma C3A cells, using oleate-treated-cells and untreated controls for comparison. Microarray and proteomic data from cell culture experiments were integrated into a custom-built systems biology database and proteogenomics analysis performed. Candidate genes with significant dysregulation and concomitant changes in protein abundance were identified and STRING association and enrichment analysis performed to identify putative pathogenic pathways.ResultsThe search strategy yielded 3 candidate genes that were specifically and significantly up-regulated in nutrient-overloaded cells compared to untreated controls: fibrinogen alpha chain (2.2 fold), fibrinogen beta chain (2.3 fold) and fibrinogen gamma chain (2.1 fold) (all rank products pfp <0.05). Fibrinogen alpha and gamma chain also demonstrated significant concomitant increases in protein abundance (3.8-fold and 2.0-fold, respectively, p <0.05).ConclusionsIn-vitro modelling of NAFLD and reactive oxygen species formation in nutrient overloaded C3A cells, in the absence of pathogenic influences from other comorbidities, suggests that NAFLD is an isolated determinant of CVD. Nutrient overload-induced up-regulation of all three fibrinogen component subunits of the coagulation cascade provides a possible mechanism to explain the excess CVD mortality observed in NAFLD patients.