Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan R. Trump is active.

Publication


Featured researches published by Jonathan R. Trump.


The Astrophysical Journal | 2012

IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA

J. L. Donley; Anton M. Koekemoer; M. Brusa; P. Capak; Carolin N. Cardamone; F. Civano; O. Ilbert; C. D. Impey; J. Kartaltepe; Takamitsu Miyaji; M. Salvato; D. B. Sanders; Jonathan R. Trump; G. Zamorani

Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L_(2-10keV)(erg s^(–1)) ≥44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N H (cm^(–2)) = 23.5 ± 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.


The Astrophysical Journal | 2011

THE BULK OF THE BLACK HOLE GROWTH SINCE z ∼ 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER-AGN CONNECTION*

Mauricio Cisternas; Knud Jahnke; K. J. Inskip; J. Kartaltepe; Anton M. Koekemoer; Thorsten Lisker; Aday R. Robaina; M. Scodeggio; Kartik Sheth; Jonathan R. Trump; R. Andrae; Takamitsu Miyaji; E. Lusso; M. Brusa; P. Capak; N. Cappelluti; F. Civano; O. Ilbert; C. D. Impey; Alexie Leauthaud; S. J. Lilly; M. Salvato; N. Z. Scoville; Y. Taniguchi

What is the relevance of major mergers and interactions as triggering mechanisms for active galactic nuclei (AGNs) activity? To answer this long-standing question, we analyze 140 XMM-Newton-selected AGN host galaxies and a matched control sample of 1264 inactive galaxies over z ~ 0.3–1.0 and M_∗ < 10^(11.7) M_⊙ with high-resolution Hubble Space Telescope/Advanced Camera for Surveys imaging from the COSMOS field. The visual analysis of their morphologies by 10 independent human classifiers yields a measure of the fraction of distorted morphologies in the AGN and control samples, i.e., quantifying the signature of recent mergers which might potentially be responsible for fueling/triggering the AGN. We find that (1) the vast majority (>85%) of the AGN host galaxies do not show strong distortions and (2) there is no significant difference in the distortion fractions between active and inactive galaxies. Our findings provide the best direct evidence that, since z ~ 1, the bulk of black hole (BH) accretion has not been triggered by major galaxy mergers, therefore arguing that the alternative mechanisms, i.e., internal secular processes and minor interactions, are the leading triggers for the episodes of major BH growth.We also exclude an alternative interpretation of our results: a substantial time lag between merging and the observability of the AGN phase could wash out the most significant merging signatures, explaining the lack of enhancement of strong distortions on the AGN hosts. We show that this alternative scenario is unlikely due to (1) recent major mergers being ruled out for the majority of sources due to the high fraction of disk-hosted AGNs, (2) the lack of a significant X-ray signal in merging inactive galaxies as a signature of a potential buried AGN, and (3) the low levels of soft X-ray obscuration for AGNs hosted by interacting galaxies, in contrast to model predictions.


The Astrophysical Journal | 2012

CANDELS: Constraining the AGN-Merger Connection with Host Morphologies at z 2

Dale D. Kocevski; S. M. Faber; Mark Mozena; Anton M. Koekemoer; Kirpal Nandra; Cyprian Rangel; E. S. Laird; M. Brusa; Stijn Wuyts; Jonathan R. Trump; David C. Koo; Rachel S. Somerville; Eric F. Bell; Jennifer M. Lotz; D. M. Alexander; Frédéric Bournaud; Christopher J. Conselice; Tomas Dahlen; Avishai Dekel; J. L. Donley; J. S. Dunlop; Alexis Finoguenov; A. Georgakakis; Mauro Giavalisco; Yicheng Guo; Norman A. Grogin; Nimish P. Hathi; S. Juneau; J. Kartaltepe; Ray A. Lucas

Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z ~ 2. Our sample consists of 72 moderate-luminosity (L X ~ 1042-44 erg s–1) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4+5.8 – 5.9%), while a smaller percentage are found in spheroids (27.8+5.8 – 4.6%). Roughly 16.7+5.3 – 3.5% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6+5.6 – 5.9%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z ~ 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z ~ 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z ~ 2 than previously thought.


The Astrophysical Journal | 2009

Photometric Redshift and Classification for the XMM-COSMOS Sources

M. Salvato; G. Hasinger; O. Ilbert; G. Zamorani; M. Brusa; N. Z. Scoville; P. Capak; S. Arnouts; H. Aussel; M. Bolzonella; A. Buongiorno; N. Cappelluti; Karina Caputi; F. Civano; R. Cook; M. Elvis; R. Gilli; Knud Jahnke; J. Kartaltepe; C. D. Impey; F. Lamareille; E. Le Floc'h; S. Lilly; V. Mainieri; P. J. McCarthy; H. J. McCracken; M. Mignoli; Bahram Mobasher; Takashi Murayama; S. Sasaki

We present photometric redshifts and spectral energy distribution (SED) classifications for a sample of 1542 optically identified sources detected with XMM in the COSMOS field. Our template fitting classifies 46 sources as stars and 464 as nonactive galaxies, while the remaining 1032 require templates with an active galactic nucleus (AGN) contribution. High accuracy in the derived photometric redshifts was accomplished as the result of (1) photometry in up to 30 bands with high-significance detections, (2) a new set of SED templates, including 18 hybrids covering the far-UV to mid-infrared, which have been constructed by the combination of AGNs and nonactive galaxies templates, and (3) multiepoch observations that have been used to correct for variability (most important for type 1 AGNs). The reliability of the photometric redshifts is evaluated using the subsample of 442 sources with measured spectroscopic redshifts. We achieved an accuracy of σΔz/(1+z_(spec)) = 0.014 for i∗_(AB) < 22.5 (σΔz/(1+z_(spec)) ~ 0.015 for i∗_(AB) < 24.5). The high accuracies were accomplished for both type 2 (where the SED is often dominated by the host galaxy) and type 1 AGNs and QSOs out to z = 4.5. The number of outliers is a large improvement over previous photometric redshift estimates for X-ray-selected sources (4.0% and 4.8% outliers for i∗_(AB) < 22.5 and i∗_(AB) < 24.5, respectively). We show that the intermediate band photometry is vital to achieving accurate photometric redshifts for AGNs, whereas the broad SED coverage provided by mid-infrared (Spitzer/IRAC) bands is important to reduce the number of outliers for normal galaxies.


The Astrophysical Journal | 2010

ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES : BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE ZCOSMOS SURVEY

Andrea Merloni; A. Bongiorno; M. Bolzonella; M. Brusa; F. Civano; A. Comastri; M. Elvis; F. Fiore; R. Gilli; Heng Hao; Knud Jahnke; Anton M. Koekemoer; E. Lusso; V. Mainieri; M. Mignoli; Takamitsu Miyaji; A. Renzini; M. Salvato; J. D. Silverman; Jonathan R. Trump; C. Vignali; G. Zamorani; P. Capak; S. J. Lilly; D. B. Sanders; Yoshiaki Taniguchi; S. Bardelli; C. M. Carollo; Karina Caputi; T. Contini

We report on the measurement of the physical properties (rest-frame K-band luminosity and total stellar mass) of the hosts of 89 broad-line (type-1) active galactic nuclei (AGNs) detected in the zCOSMOS survey in the redshift range 1 < z < 2.2. The unprecedented multi-wavelength coverage of the survey field allows us to disentangle the emission of the host galaxy from that of the nuclear black hole in their spectral energy distributions (SEDs). We derive an estimate of black hole masses through the analysis of the broad Mg II emission lines observed in the medium-resolution spectra taken with VIMOS/VLT as part of the zCOSMOS project. We found that, as compared to the local value, the average black hole to host-galaxy mass ratio appears to evolve positively with redshift, with a best-fit evolution of the form (1 + z)^[(0.68±0.12)^(+0.6)_(-0.3)], where the large asymmetric systematic errors stem from the uncertainties in the choice of initial mass function, in the calibration of the virial relation used to estimate BH masses and in the mean QSO SED adopted. On the other hand, if we consider the observed rest-frame K-band luminosity, objects tend to be brighter, for a given black hole mass, than those on the local M_(BH)-M_K relation. This fact, together with more indirect evidence from the SED fitting itself, suggests that the AGN hosts are likely actively star-forming galaxies. A thorough analysis of observational biases induced by intrinsic scatter in the scaling relations reinforces the conclusion that an evolution of the M_(BH)-M_* relation must ensue for actively growing black holes at early times: either its overall normalization, or its intrinsic scatter (or both) appear to increase with redshift. This can be interpreted as signature of either a more rapid growth of supermassive black holes at high redshift, a change of structural properties of AGN hosts at earlier times, or a significant mismatch between the typical growth times of nuclear black holes and host galaxies. In any case, our results provide important clues on the nature of the early co-evolution of black holes and galaxies and challenging tests for models of AGN feedback and self-regulated growth of structures.


The Astrophysical Journal | 2013

CANDELS: The Progenitors of Compact Quiescent Galaxies at z 2

Guillermo Barro; S. M. Faber; P. G. Pérez-González; David C. Koo; Christina C. Williams; Dale D. Kocevski; Jonathan R. Trump; Mark Mozena; Elizabeth J. McGrath; Arjen van der Wel; Stijn Wuyts; Eric F. Bell; Darren J. Croton; Daniel Ceverino; Avishai Dekel; M. L. N. Ashby; Edmond Cheung; Henry C. Ferguson; A. Fontana; Jerome J. Fang; Mauro Giavalisco; Norman A. Grogin; Yicheng Guo; Nimish P. Hathi; Philip F. Hopkins; Kuang-Han Huang; Anton M. Koekemoer; J. Kartaltepe; Kyoung-Soo Lee; Jeffrey A. Newman

We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M > 1010 M ?) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z 2, cSFGs present SFR = 100-200 M ? yr?1, yet their specific star formation rates (sSFR ~ 10?9?yr?1) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30?times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 108?yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z ~ 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z 2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z 2) path in which larger SFGs form extended QGs without passing through a compact state.


Astrophysical Journal Supplement Series | 2007

The XMM-Newton Wide-Field Survey in the COSMOS Field: Statistical Properties of Clusters of Galaxies

Alexis Finoguenov; L. Guzzo; G. Hasinger; N. Z. Scoville; H. Aussel; H. Böhringer; M. Brusa; P. Capak; N. Cappelluti; A. Comastri; S. Giodini; Richard E. Griffiths; C. D. Impey; Anton M. Koekemoer; Jean-Paul Kneib; A. Leauthaud; O. Le Fèvre; S. Lilly; V. Mainieri; Richard Massey; H. J. McCracken; B. Mobasher; Takashi Murayama; J. A. Peacock; E. Schinnerer; J. D. Silverman; Vernesa Smolčić; Y. Taniguchi; L. Tasca; James E. Taylor

We present the results of a search for galaxy clusters in the first 36 XMM-Newton pointings on the Cosmic Evolution Survey (COSMOS) field. We reach a depth for a total cluster flux in the 0.5-2 keV band of 3 × 10^(-15) ergs cm^(-2) s^(-1), having one of the widest XMM-Newton contiguous raster surveys, covering an area of 2.1 deg^2. Cluster candidates are identified through a wavelet detection of extended X-ray emission. Verification of the cluster candidates is done based on a galaxy concentration analysis in redshift slices of thickness 0.1-0.2 in redshift, using the multiband photometric catalog of the COSMOS field and restricting the search to z S)-log S distribution compares well with previous results, although yielding a somewhat higher number of clusters at similar fluxes. The X-ray luminosity function of COSMOS clusters matches well the results of nearby surveys, providing a comparably tight constraint on the faint-end slope of α = 1.93 ± 0.04. For the probed luminosity range of (8 × 10^(42))-(2 × 10^(44)) ergs s^(-1), our survey is in agreement with and adds significantly to the existing data on the cluster luminosity function at high redshifts and implies no substantial evolution at these luminosities to z = 1.3.


The Astrophysical Journal | 2011

Dissecting photometric redshift for active galactic nucleus using XMM- and Chandra-COSMOS samples

M. Salvato; O. Ilbert; Guenther Hasinger; F. Civano; G. Zamorani; M. Brusa; M. Elvis; C. Vignali; H. Aussel; A. Comastri; F. Fiore; E. Le Floc'h; V. Mainieri; S. Bardelli; M. Bolzonella; A. Bongiorno; P. Capak; Karina Caputi; N. Cappelluti; C. M. Carollo; T. Contini; B. Garilli; A. Iovino; S. Fotopoulou; Antonella Fruscione; R. Gilli; C. Halliday; Jean-Paul Kneib; Y. Kakazu; J. Kartaltepe

In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ_(Δz/(1+z(spec))~0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg^2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H_(AB) = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.


Astronomy and Astrophysics | 2010

The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS

E. Lusso; A. Comastri; C. Vignali; G. Zamorani; M. Brusa; R. Gilli; K. Iwasawa; M. Salvato; F. Civano; M. Elvis; Andrea Merloni; A. Bongiorno; Jonathan R. Trump; Anton M. Koekemoer; E. Schinnerer; E. Le Floc'h; N. Cappelluti; Knud Jahnke; M. T. Sargent; J. D. Silverman; V. Mainieri; F. Fiore; M. Bolzonella; O. Le Fèvre; B. Garilli; A. Iovino; Jean-Paul Kneib; F. Lamareille; S. J. Lilly; M. Mignoli

We present a study of the X-ray to optical properties of a sample of 545 X-ray selected type 1 AGN, from the XMM-COSMOS survey, over a wide range of redshifts (0.04 \textless z \textless 4.25) and X-ray luminosities (40.6 \textless= Log L([2-10]) (keV) \textless= 45.3). About 60% of them are spectroscopically identified type 1 AGN, while the others have a reliable photometric redshift and are classified as type 1 AGN on the basis of their multi-band Spectral Energy Distributions. We discuss the relationship between UV and X-ray luminosity, as parameterized by the alpha(ox) spectral slope, and its dependence on redshift and luminosity. We compare our findings with previous investigations of optically selected broad-line AGN (mostly from SDSS). A highly significant correlation between alpha(ox) and L(2500) angstrom is found, in agreement with previous investigations of optically selected samples. We calculate bolometric corrections, k(bol), for the whole sample using hard X-ray luminosities (L([2-10] keV)), and the Eddington ratios for a subsample of 150 objects for which black hole mass estimates are available. We confirm the trend of increasing bolometric correction with increasing Eddington ratio as proposed in previous works. A tight correlation is found between alpha(ox) and k(bol), which can be used to estimate accurate bolometric corrections using only optical and X-ray data. We find a significant correlation between alpha(ox) and Eddington ratio, in which the ratio between X-ray and optical flux decreases with increasing Eddington ratio.


The Astrophysical Journal | 2009

ACTIVE GALACTIC NUCLEUS HOST GALAXY MORPHOLOGIES IN COSMOS

Jared M. Gabor; C. D. Impey; Knud Jahnke; Brooke Simmons; Jonathan R. Trump; Anton M. Koekemoer; M. Brusa; N. Cappelluti; E. Schinnerer; Vernesa Smolčić; M. Salvato; Jason Rhodes; Bahram Mobasher; P. Capak; Richard Massey; Alexie Leauthaud; N. Z. Scoville

We use Hubble Space Telescope/Advanced Camera for Surveys images and a photometric catalog of the Cosmic Evolution Survey (COSMOS) field to analyze morphologies of the host galaxies of ~400 active galactic nucleus (AGN) candidates at redshifts 0.3 < z < 1.0. We compare the AGN hosts with a sample of nonactive galaxies drawn from the COSMOS field to match the magnitude and redshift distribution of the AGN hosts. We perform two-dimensional surface brightness modeling with GALFIT to yield host galaxy and nuclear point source magnitudes. X-ray-selected AGN host galaxy morphologies span a substantial range that peaks between those of early-type, bulge-dominated and late-type, disk-dominated systems. We also measure the asymmetry and concentration of the host galaxies. Unaccounted for, the nuclear point source can significantly bias results of these measured structural parameters, so we subtract the best-fit point source component to obtain images of the underlying host galaxies. Our concentration measurements reinforce the findings of our two-dimensional morphology fits, placing X-ray AGN hosts between early- and late-type inactive galaxies. AGN host asymmetry distributions are consistent with those of control galaxies. Combined with a lack of excess companion galaxies around AGN, the asymmetry distributions indicate that strong interactions are no more prevalent among AGN than normal galaxies. In light of recent work, these results suggest that the host galaxies of AGN at these X-ray luminosities may be in a transition from disk-dominated to bulge-dominated, but that this transition is not typically triggered by major mergers.We use HST/ACS images and a photometric catalog of the COSMOS field to analyze morphologies of the host galaxies of ∼400 AGN candidates at redshifts 0.3 < z < 1.0. We compare the AGN hosts with a sample of non-active galaxies drawn from the COSMOS field to match the magnitude and redshift distribution of the AGN hosts. We perform 2-D surface brightness modeling with GALFIT to yield host galaxy and nuclear point source magnitudes. X-ray selected AGN host galaxy morphologies span a substantial range that peaks between those of early-type, bulge-dominated and late-type, disk-dominated systems. We also measure the asymmetry and concentration of the host galaxies. Unaccounted for, the nuclear point source can significantly bias results of these measured structural parameters, so we subtract the best-fit point source component to obtain images of the underlying host galaxies. Our concentration measurements reinforce the findings of our 2-D morphology fits, placing X-ray AGN hosts between earlyand late-type inactive galaxies. AGN host asymmetry distributions are consistent with those of control galaxies. Combined with a lack of excess companion galaxies around AGN, the asymmetry distributions indicate that strong interactions are no more prevalent among AGN than normal galaxies. In light of recent work, these results suggest that the host galaxies of AGN at these X-ray luminosities may be in a transition from disk-dominated to bulge-dominated, but that this transition is not typically triggered by major mergers. Subject headings: galaxies: active — galaxies: evolution — galaxies: interactions — galaxies: structure

Collaboration


Dive into the Jonathan R. Trump's collaboration.

Top Co-Authors

Avatar

Anton M. Koekemoer

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Capak

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Brusa

University of Bologna

View shared research outputs
Top Co-Authors

Avatar

V. Mainieri

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge