Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Romiguier is active.

Publication


Featured researches published by Jonathan Romiguier.


Nature | 2014

Comparative population genomics in animals uncovers the determinants of genetic diversity

Jonathan Romiguier; Philippe Gayral; Marion Ballenghien; Aurélien Bernard; Vincent Cahais; Anne Chenuil; Ylenia Chiari; R. Dernat; Laurent Duret; Nicolas Faivre; Etienne Loire; João M. Lourenço; Benoit Nabholz; Camille Roux; Georgia Tsagkogeorga; A.A.T. Weber; Lucy A. Weinert; Khalid Belkhir; Nicolas Bierne; Sylvain Glémin; Nicolas Galtier

Genetic diversity is the amount of variation observed between DNA sequences from distinct individuals of a given species. This pivotal concept of population genetics has implications for species health, domestication, management and conservation. Levels of genetic diversity seem to vary greatly in natural populations and species, but the determinants of this variation, and particularly the relative influences of species biology and ecology versus population history, are still largely mysterious. Here we show that the diversity of a species is predictable, and is determined in the first place by its ecological strategy. We investigated the genome-wide diversity of 76 non-model animal species by sequencing the transcriptome of two to ten individuals in each species. The distribution of genetic diversity between species revealed no detectable influence of geographic range or invasive status but was accurately predicted by key species traits related to parental investment: long-lived or low-fecundity species with brooding ability were genetically less diverse than short-lived or highly fecund ones. Our analysis demonstrates the influence of long-term life-history strategies on species response to short-term environmental perturbations, a result with immediate implications for conservation policies.


Genome Research | 2010

Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes

Jonathan Romiguier; Vincent Ranwez; Emmanuel J. P. Douzery; Nicolas Galtier

The origin, evolution, and functional relevance of genomic variations in GC content are a long-debated topic, especially in mammals. Most of the existing literature, however, has focused on a small number of model species and/or limited sequence data sets. We analyzed more than 1000 orthologous genes in 33 fully sequenced mammalian genomes, reconstructed their ancestral isochore organization in the maximum likelihood framework, and explored the evolution of third-codon position GC content in representatives of 16 orders and 27 families. We showed that the previously reported erosion of GC-rich isochores is not a general trend. Several species (e.g., shrew, microbat, tenrec, rabbit) have independently undergone a marked increase in GC content, with a widening gap between the GC-poorest and GC-richest classes of genes. The intensively studied apes and (especially) murids do not reflect the general placental pattern. We correlated GC-content evolution with species life-history traits and cytology. Significant effects of body mass and genome size were detected, with each being consistent with the GC-biased gene conversion model.


Molecular Biology and Evolution | 2013

Less Is More in Mammalian Phylogenomics: AT-Rich Genes Minimize Tree Conflicts and Unravel the Root of Placental Mammals

Jonathan Romiguier; Vincent Ranwez; Frédéric Delsuc; Nicolas Galtier; Emmanuel J. P. Douzery

Despite the rapid increase of size in phylogenomic data sets, a number of important nodes on animal phylogeny are still unresolved. Among these, the rooting of the placental mammal tree is still a controversial issue. One difficulty lies in the pervasive phylogenetic conflicts among genes, with each one telling its own story, which may be reliable or not. Here, we identified a simple criterion, that is, the GC content, which substantially helps in determining which gene trees best reflect the species tree. We assessed the ability of 13,111 coding sequence alignments to correctly reconstruct the placental phylogeny. We found that GC-rich genes induced a higher amount of conflict among gene trees and performed worse than AT-rich genes in retrieving well-supported, consensual nodes on the placental tree. We interpret this GC effect mainly as a consequence of genome-wide variations in recombination rate. Indeed, recombination is known to drive GC-content evolution through GC-biased gene conversion and might be problematic for phylogenetic reconstruction, for instance, in an incomplete lineage sorting context. When we focused on the AT-richest fraction of the data set, the resolution level of the placental phylogeny was greatly increased, and a strong support was obtained in favor of an Afrotheria rooting, that is, Afrotheria as the sister group of all other placentals. We show that in mammals most conflicts among gene trees, which have so far hampered the resolution of the placental tree, are concentrated in the GC-rich regions of the genome. We argue that the GC content-because it is a reliable indicator of the long-term recombination rate-is an informative criterion that could help in identifying the most reliable molecular markers for species tree inference.


Molecular Biology and Evolution | 2014

OrthoMaM v8: A Database of Orthologous Exons and Coding Sequences for Comparative Genomics in Mammals

Emmanuel J. P. Douzery; Celine Scornavacca; Jonathan Romiguier; Khalid Belkhir; Nicolas Galtier; Frédéric Delsuc; Vincent Ranwez

Comparative genomic studies extensively rely on alignments of orthologous sequences. Yet, selecting, gathering, and aligning orthologous exons and protein-coding sequences (CDS) that are relevant for a given evolutionary analysis can be a difficult and time-consuming task. In this context, we developed OrthoMaM, a database of ORTHOlogous MAmmalian Markers describing the evolutionary dynamics of orthologous genes in mammalian genomes using a phylogenetic framework. Since its first release in 2007, OrthoMaM has regularly evolved, not only to include newly available genomes but also to incorporate up-to-date software in its analytic pipeline. This eighth release integrates the 40 complete mammalian genomes available in Ensembl v73 and provides alignments, phylogenies, evolutionary descriptor information, and functional annotations for 13,404 single-copy orthologous CDS and 6,953 long exons. The graphical interface allows to easily explore OrthoMaM to identify markers with specific characteristics (e.g., taxa availability, alignment size, %G+C, evolutionary rate, chromosome location). It hence provides an efficient solution to sample preprocessed markers adapted to user-specific needs. OrthoMaM has proven to be a valuable resource for researchers interested in mammalian phylogenomics, evolutionary genomics, and has served as a source of benchmark empirical data sets in several methodological studies. OrthoMaM is available for browsing, query and complete or filtered downloads at http://www.orthomam.univ-montp2.fr/.


Molecular Biology and Evolution | 2012

Efficient Selection of Branch-Specific Models of Sequence Evolution

Julien Y. Dutheil; Nicolas Galtier; Jonathan Romiguier; Emmanuel J. P. Douzery; Vincent Ranwez; Bastien Boussau

The analysis of extant sequences shows that molecular evolution has been heterogeneous through time and among lineages. However, for a given sequence alignment, it is often difficult to uncover what factors caused this heterogeneity. In fact, identifying and characterizing heterogeneous patterns of molecular evolution along a phylogenetic tree is very challenging, for lack of appropriate methods. Users either have to a priori define groups of branches along which they believe molecular evolution has been similar or have to allow each branch to have its own pattern of molecular evolution. The first approach assumes prior knowledge that is seldom available, and the second requires estimating an unreasonably large number of parameters. Here we propose a convenient and reliable approach where branches get clustered by their pattern of molecular evolution alone, with no need for prior knowledge about the data set under study. Model selection is achieved in a statistical framework and therefore avoids overparameterization. We rely on substitution mapping for efficiency and present two clustering approaches, depending on whether or not we expect neighbouring branches to share more similar patterns of sequence evolution than distant branches. We validate our method on simulations and test it on four previously published data sets. We find that our method correctly groups branches sharing similar equilibrium GC contents in a data set of ribosomal RNAs and recovers expected footprints of selection through dN/dS. Importantly, it also uncovers a new pattern of relaxed selection in a phylogeny of Mantellid frogs, which we are able to correlate to life-history traits. This shows that our programs should be very useful to study patterns of molecular evolution and reveal new correlations between sequence and species evolution. Our programs can run on DNA, RNA, codon, or amino acid sequences with a large set of possible models of substitutions and are available at http://biopp.univ-montp2.fr/forge/testnh.


Journal of Evolutionary Biology | 2014

Population genomics of eusocial insects: the costs of a vertebrate-like effective population size

Jonathan Romiguier; João M. Lourenço; Philippe Gayral; Nicolas Faivre; Lucy A. Weinert; Sébastien Ravel; Marion Ballenghien; Vincent Cahais; Aurélien Bernard; Etienne Loire; Laurent Keller; Nicolas Galtier

The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life‐history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome‐wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA‐seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes – a marker of the effective population size – in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels.


Genome Biology | 2014

Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition

Claudia C Weber; Bastien Boussau; Jonathan Romiguier; Erich D. Jarvis; Hans Ellegren

BackgroundWhile effective population size (Ne) and life history traits such as generation time are known to impact substitution rates, their potential effects on base composition evolution are less well understood. GC content increases with decreasing body mass in mammals, consistent with recombination-associated GC biased gene conversion (gBGC) more strongly impacting these lineages. However, shifts in chromosomal architecture and recombination landscapes between species may complicate the interpretation of these results. In birds, interchromosomal rearrangements are rare and the recombination landscape is conserved, suggesting that this group is well suited to assess the impact of life history on base composition.ResultsEmploying data from 45 newly and 3 previously sequenced avian genomes covering a broad range of taxa, we found that lineages with large populations and short generations exhibit higher GC content. The effect extends to both coding and non-coding sites, indicating that it is not due to selection on codon usage. Consistent with recombination driving base composition, GC content and heterogeneity were positively correlated with the rate of recombination. Moreover, we observed ongoing increases in GC in the majority of lineages.ConclusionsOur results provide evidence that gBGC may drive patterns of nucleotide composition in avian genomes and are consistent with more effective gBGC in large populations and a greater number of meioses per unit time; that is, a shorter generation time. Thus, in accord with theoretical predictions, base composition evolution is substantially modulated by species life history.


Molecular Biology and Evolution | 2013

Genomic Evidence for Large, Long-Lived Ancestors to Placental Mammals

Jonathan Romiguier; Vincent Ranwez; Emmanuel J. P. Douzery; Nicolas Galtier

It is widely assumed that our mammalian ancestors, which lived in the Cretaceous era, were tiny animals that survived massive asteroid impacts in shelters and evolved into modern forms after dinosaurs went extinct, 65 Ma. The small size of most Mesozoic mammalian fossils essentially supports this view. Paleontology, however, is not conclusive regarding the ancestry of extant mammals, because Cretaceous and Paleocene fossils are not easily linked to modern lineages. Here, we use full-genome data to estimate the longevity and body mass of early placental mammals. Analyzing 36 fully sequenced mammalian genomes, we reconstruct two aspects of the ancestral genome dynamics, namely GC-content evolution and nonsynonymous over synonymous rate ratio. Linking these molecular evolutionary processes to life-history traits in modern species, we estimate that early placental mammals had a life span above 25 years and a body mass above 1 kg. This is similar to current primates, cetartiodactyls, or carnivores, but markedly different from mice or shrews, challenging the dominant view about mammalian origin and evolution. Our results imply that long-lived mammals existed in the Cretaceous era and were the most successful in evolution, opening new perspectives about the conditions for survival to the Cretaceous-Tertiary crisis.


PLOS ONE | 2012

Fast and robust characterization of time-heterogeneous sequence evolutionary processes using substitution mapping.

Jonathan Romiguier; Emeric Figuet; Nicolas Galtier; Emmanuel J. P. Douzery; Bastien Boussau; Julien Y. Dutheil; Vincent Ranwez

Genes and genomes do not evolve similarly in all branches of the tree of life. Detecting and characterizing the heterogeneity in time, and between lineages, of the nucleotide (or amino acid) substitution process is an important goal of current molecular evolutionary research. This task is typically achieved through the use of non-homogeneous models of sequence evolution, which being highly parametrized and computationally-demanding are not appropriate for large-scale analyses. Here we investigate an alternative methodological option based on probabilistic substitution mapping. The idea is to first reconstruct the substitutional history of each site of an alignment under a homogeneous model of sequence evolution, then to characterize variations in the substitution process across lineages based on substitution counts. Using simulated and published datasets, we demonstrate that probabilistic substitution mapping is robust in that it typically provides accurate reconstruction of sequence ancestry even when the true process is heterogeneous, but a homogeneous model is adopted. Consequently, we show that the new approach is essentially as efficient as and extremely faster than (up to 25 000 times) existing methods, thus paving the way for a systematic survey of substitution process heterogeneity across genes and lineages.


Molecular Biology and Evolution | 2016

Phylogenomics Controlling for Base Compositional Bias Reveals a Single Origin of Eusociality in Corbiculate Bees

Jonathan Romiguier; Sydney A. Cameron; S. Hollis Woodard; Brielle J. Fischman; Laurent Keller; Christophe J. Praz

As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heterogeneous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombination rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes.

Collaboration


Dive into the Jonathan Romiguier's collaboration.

Top Co-Authors

Avatar

Nicolas Galtier

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit Nabholz

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Emeric Figuet

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge