Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan S. Berg is active.

Publication


Featured researches published by Jonathan S. Berg.


Genetics in Medicine | 2013

ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing

Robert C. Green; Jonathan S. Berg; Wayne W. Grody; Sarah S. Kalia; Bruce R. Korf; Christa Lese Martin; Amy L. McGuire; Robert L. Nussbaum; Kelly E. Ormond; Heidi L. Rehm; Michael S. Watson; Marc S. Williams; Leslie G. Biesecker

In clinical exome and genome sequencing, there is a potential for the recognition and reporting of incidental or secondary findings unrelated to the indication for ordering the sequencing but of medical value for patient care. The American College of Medical Genetics and Genomics (ACMG) recently published a policy statement on clinical sequencing that emphasized the importance of alerting the patient to the possibility of such results in pretest patient discussions, clinical testing, and reporting of results. The ACMG appointed a Working Group on Incidental Findings in Clinical Exome and Genome Sequencing to make recommendations about responsible management of incidental findings when patients undergo exome or genome sequencing. This Working Group conducted a year-long consensus process, including an open forum at the 2012 Annual Meeting and review by outside experts, and produced recommendations that have been approved by the ACMG Board. Specific and detailed recommendations, and the background and rationale for these recommendations, are described herein. The ACMG recommends that laboratories performing clinical sequencing seek and report mutations of the specified classes or types in the genes listed here. This evaluation and reporting should be performed for all clinical germline (constitutional) exome and genome sequencing, including the “normal” of tumor-normal subtractive analyses in all subjects, irrespective of age but excluding fetal samples. We recognize that there are insufficient data on penetrance and clinical utility to fully support these recommendations, and we encourage the creation of an ongoing process for updating these recommendations at least annually as further data are collected.Genet Med 2013:15(7):565–574


Nature Genetics | 2012

Dnmt3a is essential for hematopoietic stem cell differentiation

Grant A. Challen; Deqiang Sun; Mira Jeong; Min Luo; Jaroslav Jelinek; Jonathan S. Berg; Christoph Bock; Aparna Vasanthakumar; Hongcang Gu; Yuanxin Xi; Shoudan Liang; Yue Lu; Gretchen J. Darlington; Alexander Meissner; Jean-Pierre Issa; Lucy A. Godley; Wei Li; Margaret A. Goodell

Loss of the de novo DNA methyltransferases Dnmt3a and Dnmt3b in embryonic stem cells obstructs differentiation; however, the role of these enzymes in somatic stem cells is largely unknown. Using conditional ablation, we show that Dnmt3a loss progressively impairs hematopoietic stem cell (HSC) differentiation over serial transplantation, while simultaneously expanding HSC numbers in the bone marrow. Dnmt3a-null HSCs show both increased and decreased methylation at distinct loci, including substantial CpG island hypermethylation. Dnmt3a-null HSCs upregulate HSC multipotency genes and downregulate differentiation factors, and their progeny exhibit global hypomethylation and incomplete repression of HSC-specific genes. These data establish Dnmt3a as a critical participant in the epigenetic silencing of HSC regulatory genes, thereby enabling efficient differentiation.


American Journal of Human Genetics | 2015

Points to Consider: Ethical, Legal, and Psychosocial Implications of Genetic Testing in Children and Adolescents

Jeffrey R. Botkin; John W. Belmont; Jonathan S. Berg; Benjamin E. Berkman; Yvonne Bombard; Ingrid A. Holm; Howard P. Levy; Kelly E. Ormond; Howard M. Saal; Nancy B. Spinner; Benjamin S. Wilfond; Joseph D. McInerney

In 1995, the American Society of Human Genetics (ASHG) and American College of Medical Genetics and Genomics (ACMG) jointly published a statement on genetic testing in children and adolescents. In the past 20 years, much has changed in the field of genetics, including the development of powerful new technologies, new data from genetic research on children and adolescents, and substantial clinical experience. This statement represents current opinion by the ASHG on the ethical, legal, and social issues concerning genetic testing in children. These recommendations are relevant to families, clinicians, and investigators. After a brief review of the 1995 statement and major changes in genetic technologies in recent years, this statement offers points to consider on a broad range of test technologies and their applications in clinical medicine and research. Recommendations are also made for record and communication issues in this domain and for professional education.


Genetics in Medicine | 2013

ACMG clinical laboratory standards for next-generation sequencing

Heidi L. Rehm; Sherri J. Bale; Pinar Bayrak-Toydemir; Jonathan S. Berg; Kerry K. Brown; Joshua L. Deignan; Michael J. Friez; Birgit Funke; Madhuri Hegde; Elaine Lyon

Next-generation sequencing technologies have been and continue to be deployed in clinical laboratories, enabling rapid transformations in genomic medicine. These technologies have reduced the cost of large-scale sequencing by several orders of magnitude, and continuous advances are being made. It is now feasible to analyze an individual’s near-complete exome or genome to assist in the diagnosis of a wide array of clinical scenarios. Next-generation sequencing technologies are also facilitating further advances in therapeutic decision making and disease prediction for at-risk patients. However, with rapid advances come additional challenges involving the clinical validation and use of these constantly evolving technologies and platforms in clinical laboratories. To assist clinical laboratories with the validation of next-generation sequencing methods and platforms, the ongoing monitoring of next-generation sequencing testing to ensure quality results, and the interpretation and reporting of variants found using these technologies, the American College of Medical Genetics and Genomics has developed the following professional standards and guidelines.Genet Med 15 9, 733–747.Genetics in Medicine (2013); 15 9, 733–747. doi:10.1038/gim.2013.92


Nature Genetics | 2008

Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities

Nicola Brunetti-Pierri; Jonathan S. Berg; Fernando Scaglia; John W. Belmont; Carlos A. Bacino; Trilochan Sahoo; Seema R. Lalani; Brett H. Graham; Brendan Lee; Marwan Shinawi; Joseph Shen; Sung Hae L Kang; Amber Pursley; Timothy Lotze; Gail Kennedy; Susan Lansky-Shafer; Christine Weaver; Elizabeth Roeder; Theresa A. Grebe; Georgianne L. Arnold; Terry Hutchison; Tyler Reimschisel; Stephen Amato; Michael T. Geragthy; Jeffrey W. Innis; Ewa Obersztyn; Beata Nowakowska; Sally Rosengren; Patricia I. Bader; Dorothy K. Grange

Chromosome region 1q21.1 contains extensive and complex low-copy repeats, and copy number variants (CNVs) in this region have recently been reported in association with congenital heart defects, developmental delay, schizophrenia and related psychoses. We describe 21 probands with the 1q21.1 microdeletion and 15 probands with the 1q21.1 microduplication. These CNVs were inherited in most of the cases in which parental studies were available. Consistent and statistically significant features of microcephaly and macrocephaly were found in individuals with microdeletion and microduplication, respectively. Notably, a paralog of the HYDIN gene located on 16q22.2 and implicated in autosomal recessive hydrocephalus was inserted into the 1q21.1 region during the evolution of Homo sapiens; we found this locus to be deleted or duplicated in the individuals we studied, making it a probable candidate for the head size abnormalities observed. We propose that recurrent reciprocal microdeletions and microduplications within 1q21.1 represent previously unknown genomic disorders characterized by abnormal head size along with a spectrum of developmental delay, neuropsychiatric abnormalities, dysmorphic features and congenital anomalies. These phenotypes are subject to incomplete penetrance and variable expressivity.


Genetics in Medicine | 2011

Deploying whole genome sequencing in clinical practice and public health: Meeting the challenge one bin at a time

Jonathan S. Berg; Muin J. Khoury; James P. Evans

Deploying whole genome sequencing in clinical practice and public health: Meeting the challenge one bin at a time


The New England Journal of Medicine | 2015

ClinGen — The Clinical Genome Resource

Heidi L. Rehm; Jonathan S. Berg; Lisa D. Brooks; Carlos Bustamante; James P. Evans; Melissa J. Landrum; David H. Ledbetter; Donna Maglott; Christa Lese Martin; Robert L. Nussbaum; Sharon E. Plon; Erin M. Ramos; Stephen T. Sherry; Michael S. Watson

On autopsy, a patient is found to have hypertrophic cardiomyopathy. The patient’s family pursues genetic testing that shows a “likely pathogenic” variant for the condition on the basis of a study in an original research publication. Given the dominant inheritance of the condition and the risk of sudden cardiac death, other family members are tested for the genetic variant to determine their risk. Several family members test negative and are told that they are not at risk for hypertrophic cardiomyopathy and sudden cardiac death, and those who test positive are told that they need to be regularly monitored for cardiomyopathy on echocardiography. Five years later, during a routine clinic visit of one of the genotype-positive family members, the cardiologist queries a database for current knowledge on the genetic variant and discovers that the variant is now interpreted as “likely benign” by another laboratory that uses more recently derived population-frequency data. A newly available testing panel for additional genes that are implicated in hypertrophic cardiomyopathy is initiated on an affected family member, and a different variant is found that is determined to be pathogenic. Family members are retested, and one member who previously tested negative is now found to be positive for this new variant. An immediate clinical workup detects evidence of cardiomyopathy, and an intracardiac defibrillator is implanted to reduce the risk of sudden cardiac death.


Nature Cell Biology | 2004

Myosin-X provides a motor-based link between integrins and the cytoskeleton

Hongquan Zhang; Jonathan S. Berg; Zhilun Li; Yunling Wang; Pernilla Lång; Aurea D. Sousa; Aparna Bhaskar; Richard E. Cheney; Staffan Strömblad

Unconventional myosins are actin-based motors with a growing number of attributed functions. Interestingly, it has been proposed that integrins are transported by unidentified myosins to facilitate cellular remodelling. Here we present an interaction between the unconventional myosin-X (Myo10) FERM (band 4.1/ezrin/radixin/moesin) domain and an NPXY motif within β-integrin cytoplasmic domains. Importantly, knock-down of Myo10 by short interfering RNA impaired integrin function in cell adhesion, whereas overexpression of Myo10 stimulated the formation and elongation of filopodia in an integrin-dependent manner and relocalized integrins together with Myo10 to the tips of filopodia. This integrin relocalization and filopodia elongation did not occur with Myo10 mutants deficient in integrin binding or with a β1-integrin point mutant deficient in Myo10 binding. Taken together, these results indicate that Myo10-mediated relocalization of integrins might serve to form adhesive structures and thereby promote filopodial extension.


Nature Cell Biology | 2002

Myosin-X is an unconventional myosin that undergoes intrafilopodial motility

Jonathan S. Berg; Richard E. Cheney

Filopodia are thin cellular protrusions that are important in cell motility and neuronal growth cone guidance. The actin filaments that make up the core of a filopodium undergo continuous retrograde flow towards the cell body. Surface receptors or particles can couple to this retrograde flow and can also move forward to the tips of filopodia, although the molecular basis of forward transport is unknown. We report here that myosin-X (Myo10 or M10), the founding member of a novel class of myosins, localizes to the tips of filopodia and undergoes striking forward and rearward movements within filopodia, which we term intrafilopodial motility. The movements of the GFP–M10 puncta correspond to forward and rearward movements of phase-dense granules along the filopodia. Finally, overexpressing full-length M10 (but not truncated forms of M10) causes an increase in the number and length of filopodia, indicating that M10 or its cargo may function in filopodial dynamics. The localization and movements of M10 strongly suggest that it functions as a motor for intrafilopodial motility.


Nature | 2004

A microtubule-binding myosin required for nuclear anchoring and spindle assembly

Kari L. Weber; Anna Marie Sokac; Jonathan S. Berg; Richard E. Cheney; William M. Bement

Proper spindle positioning and orientation are essential for asymmetric cell division and require microtubule–actin filament (F-actin) interactions in many systems. Such interactions are particularly important in meiosis, where they mediate nuclear anchoring, as well as meiotic spindle assembly and rotation, two processes required for asymmetric cell division. Myosin-10 proteins are phosphoinositide-binding, actin-based motors that contain carboxy-terminal MyTH4 and FERM domains of unknown function. Here we show that Xenopus laevis myosin-10 (Myo10) associates with microtubules in vitro and in vivo, and is concentrated at the point where the meiotic spindle contacts the F-actin-rich cortex. Microtubule association is mediated by the MyTH4-FERM domains, which bind directly to purified microtubules. Disruption of Myo10 function disrupts nuclear anchoring, spindle assembly and spindle–F-actin association. Thus, this myosin has a novel and critically important role during meiosis in integrating the F-actin and microtubule cytoskeletons.

Collaboration


Dive into the Jonathan S. Berg's collaboration.

Top Co-Authors

Avatar

James P. Evans

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Myra I. Roche

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sharon E. Plon

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Rini

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Gail P. Jarvik

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Natasha T. Strande

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirk C. Wilhelmsen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Bradford C. Powell

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge