Jonathan Sam Simons
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Sam Simons.
The Journal of Neuroscience | 2016
Heidi M. Bonnici; Franziska R. Richter; Yasemin Yazar; Jonathan Sam Simons
Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the regions precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. SIGNIFICANCE STATEMENT Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (AnG) contribute to the retrieval of episodic and semantic memories. Our multivariate pattern classifier could distinguish episodic memory representations in AnG according to whether they were multimodal (audio-visual) or unimodal (auditory or visual) in nature, whereas statistically equivalent AnG activity was observed during retrieval of unimodal and multimodal semantic memories. Classification accuracy during episodic retrieval scaled with the trial-by-trial vividness with which participants experienced their recollections. Therefore, the findings offer new insights into the integrative processes subserved by AnG and how its function may contribute to our subjective experience of remembering.
Quarterly Journal of Experimental Psychology | 2016
Lucy G. Cheke; Jonathan Sam Simons; Nicola S. Clayton
Obesity has become an international health crisis. There is accumulating evidence that excess bodyweight is associated with changes to the structure and function of the brain and with a number of cognitive deficits. In particular, research suggests that obesity is associated with hippocampal and frontal lobe dysfunction, which would be predicted to impact memory. However, evidence for such memory impairment is currently limited. We hypothesised that higher body mass index (BMI) would be associated with reduced performance on a test of episodic memory that assesses not only content, but also context and feature integration. A total of 50 participants aged 18–35 years, with BMIs ranging from 18 to 51, were tested on a novel what–where–when style episodic memory test: the “Treasure-Hunt Task”. This test requires recollection of object, location, and temporal order information within the same paradigm, as well as testing the ability to integrate these features into a single event recollection. Higher BMI was associated with significantly lower performance on the what–where–when (WWW) memory task and all individual elements: object identification, location memory, and temporal order memory. After controlling for age, sex, and years in education, the effect of BMI on the individual what, where, and when tasks remained, while the WWW dropped below significance. This finding of episodic memory deficits in obesity is of concern given the emerging evidence for a role for episodic cognition in appetite regulation.
Journal of Experimental Psychology: General | 2015
William Hirst; Elizabeth A. Phelps; Robert Meksin; Chandan J. Vaidya; Marcia K. Johnson; Karen J. Mitchell; Randy L. Buckner; Andrew E. Budson; John D. E. Gabrieli; Cindy Lustig; Mara Mather; Kevin N. Ochsner; Daniel L. Schacter; Jonathan Sam Simons; Keith B. Lyle; Alexandru Cuc; Andreas Olsson
Within a week of the attack of September 11, 2001, a consortium of researchers from across the United States distributed a survey asking about the circumstances in which respondents learned of the attack (their flashbulb memories) and the facts about the attack itself (their event memories). Follow-up surveys were distributed 11, 25, and 119 months after the attack. The study, therefore, examines retention of flashbulb memories and event memories at a substantially longer retention interval than any previous study using a test-retest methodology, allowing for the study of such memories over the long term. There was rapid forgetting of both flashbulb and event memories within the first year, but the forgetting curves leveled off after that, not significantly changing even after a 10-year delay. Despite the initial rapid forgetting, confidence remained high throughout the 10-year period. Five putative factors affecting flashbulb memory consistency and event memory accuracy were examined: (a) attention to media, (b) the amount of discussion, (c) residency, (d) personal loss and/or inconvenience, and (e) emotional intensity. After 10 years, none of these factors predicted flashbulb memory consistency; media attention and ensuing conversation predicted event memory accuracy. Inconsistent flashbulb memories were more likely to be repeated rather than corrected over the 10-year period; inaccurate event memories, however, were more likely to be corrected. The findings suggest that even traumatic memories and those implicated in a communitys collective identity may be inconsistent over time and these inconsistencies can persist without the corrective force of external influences.
eLife | 2016
Franziska R. Richter; Rose A. Cooper; Paul Michael Bays; Jonathan Sam Simons
A network of brain regions have been linked with episodic memory retrieval, but limited progress has been made in identifying the contributions of distinct parts of the network. Here, we utilized continuous measures of retrieval to dissociate three components of episodic memory: retrieval success, precision, and vividness. In the fMRI scanner, participants encoded objects that varied continuously on three features: color, orientation, and location. Participants’ memory was tested by having them recreate the appearance of the object features using a continuous dial, and continuous vividness judgments were recorded. Retrieval success, precision, and vividness were dissociable both behaviorally and neurally: successful versus unsuccessful retrieval was associated with hippocampal activity, retrieval precision scaled with activity in the angular gyrus, and vividness judgments tracked activity in the precuneus. The ability to dissociate these components of episodic memory reveals the benefit afforded by measuring memory on a continuous scale, allowing functional parcellation of the retrieval network. DOI: http://dx.doi.org/10.7554/eLife.18260.001
Neuroscience & Biobehavioral Reviews | 2016
Leor Zmigrod; Jane R Garrison; Joseph Carr; Jonathan Sam Simons
Activation likelihood estimation meta-analysis of functional neuroimaging data was used to investigate the neural mechanisms underlying auditory-verbal and visual hallucinations (AVHs and VHs). Consistent activation across studies during AVHs, but not VHs, in Wernickes and Brocas areas is consistent with involvement of speech and language processes in the experience of hearing voices when none are present. Similarly, greater activity in auditory cortex during AVHs and in visual cortex during VHs supports models proposing over-stimulation of sensory cortices in the generation of these perceptual anomalies. Activation across studies in the medial temporal lobe highlights a role for memory intrusions in the provision of content for AVHs, whereas insula activation may relate to the involvement of awareness and self-representation. Finally, activation in the paracingulate region of medial prefrontal cortex during AVHs is consistent with models implicating reality monitoring impairment in the misattribution of self-generated information as externally perceived. In the light of the results, the need for unified theoretical frameworks that account for the full range of hallucinatory experiences is discussed.
Neuropsychologia | 2017
Lucy G. Cheke; Heidi M. Bonnici; Nicola S. Clayton; Jonathan Sam Simons
ABSTRACT Increasing research in animals and humans suggests that obesity may be associated with learning and memory deficits, and in particular with reductions in episodic memory. Rodent models have implicated the hippocampus in obesity‐related memory impairments, but the neural mechanisms underlying episodic memory deficits in obese humans remain undetermined. In the present study, lean and obese human participants were scanned using fMRI while completing a What‐Where‐When episodic memory test (the “Treasure‐Hunt Task”) that assessed the ability to remember integrated item, spatial, and temporal details of previously encoded complex events. In lean participants, the Treasure‐Hunt task elicited significant activity in regions of the brain known to be important for recollecting episodic memories, such as the hippocampus, angular gyrus, and dorsolateral prefrontal cortex. Both obesity and insulin resistance were associated with significantly reduced functional activity throughout the core recollection network. These findings indicate that obesity is associated with reduced functional activity in core brain areas supporting episodic memory and that insulin resistance may be a key player in this association. HIGHLIGHTSObesity associated with reduced activity in core recollection network during episodic memory.Insulin resistance associated with reduced activity in core recollection network during episodic memory.Insulin resistance, but not obesity, associated with poorer memory performance.
Hippocampus | 2016
Richard N. Henson; Andrea Greve; Elisa Cooper; Mariella Gregori; Jonathan Sam Simons; Linda Geerligs; Sharon Erzinçlioğlu; Narinder Kapur; Georgina Browne
Focal lesions can affect connectivity between distal brain regions (connectional diaschisis) and impact the graph‐theoretic properties of major brain networks (connectomic diaschisis). Given its unique anatomy and diverse range of functions, the hippocampus has been claimed to be a critical “hub” in brain networks. We investigated the effects of hippocampal lesions on structural and functional connectivity in six patients with amnesia, using a range of magnetic resonance imaging (MRI) analyses. Neuropsychological assessment revealed marked episodic memory impairment and generally intact performance across other cognitive domains. The hippocampus was the only brain structure exhibiting reduced grey‐matter volume that was consistent across patients, and the fornix was the only major white‐matter tract to show altered structural connectivity according to both diffusion metrics. Nonetheless, functional MRI revealed both increases and decreases in functional connectivity. Analysis at the level of regions within the default‐mode network revealed reduced functional connectivity, including between nonhippocampal regions (connectional diaschisis). Analysis at the level of functional networks revealed reduced connectivity between thalamic and precuneus networks, but increased connectivity between the default‐mode network and frontal executive network. The overall functional connectome showed evidence of increased functional segregation in patients (connectomic diaschisis). Together, these results point to dynamic reorganization following hippocampal lesions, with both decreased and increased functional connectivity involving limbic‐diencephalic structures and larger‐scale networks.
Journal of Abnormal Psychology | 2015
Rose A. Cooper; Katrina Carol Plaisted-Grant; Deborah E. Hannula; Charan Ranganath; Simon Baron-Cohen; Jonathan Sam Simons
Subtle memory deficits observed in autism spectrum conditions (ASC) have often been characterized as reflecting impaired recollection and it has been proposed that a relational binding deficit may underlie the recollection impairment. However, subjective recollection and relational binding have not been measured within the same task in ASC to date and it is unclear whether a relational binding deficit can provide a full account of recollection impairments in ASC. Relational memory has also not been compared with item memory when the demands of the 2 tasks are comparable. To assess recollection, relational memory, and item memory within a single task in ASC, 24 adults with ASC and 24 typically developed adults undertook a change detection memory task that assessed recollection of item-specific and spatial details. Participants studied rendered indoor and outdoor scenes and, in a subsequent recognition memory test, distinguished scenes that had not changed from those that had either undergone an item change (a different item exemplar) or a relational (spatial) change, which was followed by a subjective recollection judgment. The ASC group identified fewer item changes and spatial changes, to a similar degree, which was attributable to a specific reduction in recollection-based recognition relative to the control group. These findings provide evidence that recollection deficits in ASC may not be driven entirely by a relational binding deficit.
Cognition | 2017
Rose A. Cooper; Katrina Carol Plaisted-Grant; Simon Baron-Cohen; Jonathan Sam Simons
People with Autism Spectrum Disorder (ASD) exhibit subtle deficits in recollection, which have been proposed to arise from encoding impairments, though a direct link has yet to be demonstrated. In the current study, we used eye-tracking to obtain trial-specific measures of encoding (eye movement patterns) during incidental (natural viewing) and intentional (strategic) encoding conditions in adults with ASD and typical controls. Using this approach, we tested the degree to which differences in encoding might contribute to recollection impairments, or whether group differences in memory primarily emerge at retrieval. Following encoding of scenes, participants were asked to distinguish between old and similar lure scenes and provide remember/familiar responses. Intentional encoding increased eye movements and subsequent recollection in both groups to a similar degree, but the ASD group were impaired overall at the memory task and used recollection less frequently. In controls, eye movements at encoding predicted subsequent correct responses and subsequent recollection on a trial-by-trial basis, as expected. In contrast, despite a similar pattern of eye movements during encoding in the two groups, eye movements did not predict trial-by-trial subsequent memory in ASD. Furthermore, recollection was associated with lower similarity between encoding- and retrieval-related eye movements in the ASD group compared to the control group. The eye-tracking results therefore provide novel evidence for a dissociation between encoding and recollection-based retrieval in ASD.
Cortex | 2017
Jane R Garrison; Peter Moseley; Ben Alderson-Day; David Smailes; Charles Fernyhough; Jonathan Sam Simons
People with schizophrenia who hallucinate show impairments in reality monitoring (the ability to distinguish internally generated information from information obtained from external sources) compared to non-hallucinating patients and healthy individuals. While this may be explained at least in part by an increased externalizing bias, it remains unclear whether this impairment is specific to reality monitoring, or whether it also reflects a general deficit in the monitoring of self-generated information (internal source monitoring). Much interest has focused recently on continuum models of psychosis which argue that hallucination-proneness is distributed in clinical and non-clinical groups, but few studies have directly investigated reality monitoring and internal source monitoring abilities in healthy individuals with a proneness to hallucinations. Two experiments are presented here: the first (N = 47, with participants selected for hallucination-proneness from a larger sample of 677 adults) found no evidence of an impairment or externalizing bias on a reality monitoring task in hallucination-prone individuals; the second (N = 124) found no evidence of atypical performance on an internal source monitoring task in hallucination-prone individuals. The significance of these findings is reviewed in light of the clinical evidence and the implications for models of hallucination generation discussed.