Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Schick is active.

Publication


Featured researches published by Jonathan Schick.


Blood | 2012

The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters

Wei Du; Reena Rani; Jared Sipple; Jonathan Schick; Kasiani C. Myers; Parinda A. Mehta; Paul R. Andreassen; Stella M. Davies; Qishen Pang

Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with BM failure and cancer. Here we show that major antioxidant defense genes are down-regulated in FA patients, and that gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of the antioxidant defense genes. Assessment of promoter activity and DNA damage repair kinetics shows that increased initial damage, rather than a reduced repair rate, contributes to the augmented oxidative DNA damage. Mechanistically, FA proteins act in concert with the chromatin-remodeling factor BRG1 to protect the promoters of antioxidant defense genes from oxidative damage. Specifically, BRG1 binds to the promoters of the antioxidant defense genes at steady state. On challenge with oxidative stress, FA proteins are recruited to promoter DNA, which correlates with significant increase in the binding of BRG1 within promoter regions. In addition, oxidative stress-induced FANCD2 ubiquitination is required for the formation of a FA-BRG1-promoter complex. Taken together, these data identify a role for the FA pathway in cellular antioxidant defense.


Journal of Investigative Dermatology | 2012

UV Light B–Mediated Inhibition of Skin Catalase Activity Promotes Gr-1+CD11b+ Myeloid Cell Expansion

Nicholas J. Sullivan; Kathleen L. Tober; Erin M. Burns; Jonathan Schick; Judith A. Riggenbach; Thomas A. Mace; Matthew A. Bill; Gregory S. Young; Tatiana M. Oberyszyn; Gregory B. Lesinski

Skin cancer incidence and mortality are higher in men compared to women, but the causes of this sex discrepancy remain largely unknown. Ultraviolet light exposure induces cutaneous inflammation and neutralizes cutaneous antioxidants. Gr-1+CD11b+ myeloid cells are heterogeneous bone marrow-derived cells that promote inflammation-associated carcinogenesis. Reduced activity of catalase, an antioxidant present within skin, has been associated with skin carcinogenesis. We utilized the outbred, immune competent Skh-1 hairless mouse model of ultraviolet light B (UVB)-induced inflammation and non-melanoma skin cancer to further define sex discrepancies in UVB-induced inflammation. Our results demonstrated that male skin had relatively lower baseline catalase activity, which was inhibited following acute UVB exposure in both sexes. Further analysis revealed that skin catalase activity inversely correlated with splenic Gr-1+CD11b+ myeloid cell percentage. Acute UVB exposure induced Gr-1+CD11b+ myeloid cell skin infiltration, which was inhibited to a greater extent in males by topical catalase treatment. In chronic UVB studies, we demonstrated that the percentage of splenic Gr-1+CD11b+ myeloid cells was 55% higher in male tumor-bearing mice compared to their female counterparts. Together, our findings indicate that lower skin catalase activity in male mice may at least in part contribute to increased UVB-induced Gr-1+CD11b+ myeloid cells and subsequent skin carcinogenesis.


Photochemistry and Photobiology | 2008

Topical treatment with OGG1 enzyme affects UVB-induced skin carcinogenesis.

Brian C. Wulff; Jonathan Schick; Jennifer M. Thomas-Ahner; Donna F. Kusewitt; Daniel B. Yarosh; Tatiana M. Oberyszyn

Nonmelanoma skin cancer resulting from UVB exposure is a large and growing problem in the United States. Production of reactive oxygen species (ROS) during the UVB‐induced inflammatory response results in the formation of oxidative DNA adducts such as 8‐hydroxy‐2‐deoxyguanine (8‐oxo‐dG), which have been shown to contribute to the development of this cancer. The 8‐oxoguanine DNA glycosylase (OGG1) enzyme repairs 8‐oxo‐dG adducts, suggesting that enhancing its activity in the skin might increase 8‐oxo‐dG repair thus preventing skin cancer development. We therefore used the SKH‐1 murine model to examine the effect of topically applied OGG1 on UVB‐induced skin cancer development. Mice were exposed three times weekly to UVB followed immediately by topical treatment with a formulation of liposome‐encapsulated OGG1 enzyme for 25 weeks. While this treatment did not affect UVB‐induced tumor multiplicity, it did reduce tumor size and dramatically reduced tumor progression, as indicated by tumor grade. These results suggest that oxidative DNA damage contributes to the progression of UVB‐induced skin tumors and that a topical formulation containing OGG1, perhaps in conjunction with other DNA repair enzymes such as T4 endonuclease V, could be used in populations at high risk for skin cancer development.


Carcinogenesis | 2013

Preventative topical diclofenac treatment differentially decreases tumor burden in male and female Skh-1 mice in a model of UVB-induced cutaneous squamous cell carcinoma

Erin M. Burns; Kathleen L. Tober; Judith A. Riggenbach; Jonathan Schick; Keith N. Lamping; Donna F. Kusewitt; Gregory S. Young; Tatiana M. Oberyszyn

Ultraviolet B (UVB) light is the major environmental carcinogen contributing to non-melanoma skin cancer (NMSC) development. There are over 3.5 million NMSC diagnoses in two million patients annually, with men having a 3-fold greater incidence of squamous cell carcinoma (SCC) compared with women. Chronic inflammation has been linked to tumorigenesis, with a key role for the cyclooxygenase-2 (COX-2) enzyme. Diclofenac, a COX-2 inhibitor and non-steroidal anti-inflammatory drug, currently is prescribed to patients as a short-term therapeutic agent to induce SCC precursor lesion regression. However, its efficacy as a preventative agent in patients without evidence of precursor lesions but with significant UVB-induced cutaneous damage has not been explored. We previously demonstrated in a murine model of UVB-induced skin carcinogenesis that when exposed to equivalent UVB doses, male mice had lower levels of inflammation but developed increased tumor multiplicity, burden and grade compared with female mice. Because of the discrepancy in the degree of inflammation between male and female skin, we sought to determine if topical treatment of previously damaged skin with an anti-inflammatory COX-2 inhibitor would decrease tumor burden and if it would be equally effective in the sexes. Our results demonstrated that despite observed sex differences in the inflammatory response, prolonged topical diclofenac treatment of chronically UVB-damaged skin effectively reduced tumor multiplicity in both sexes. Unexpectedly, tumor burden was significantly decreased only in male mice. Our data suggest a new therapeutic use for currently available topical diclofenac as a preventative intervention for patients predisposed to cutaneous SCC development before lesions appear.


International Journal of Cancer | 2010

Celecoxib reduces the effects of acute and chronic UVB exposure in mice treated with therapeutically relevant immunosuppressive drugs.

Brian C. Wulff; Jennifer M. Thomas-Ahner; Jonathan Schick; Tatiana M. Oberyszyn

Solid organ transplant recipients have a greatly increased risk for the development of non‐melanoma skin cancers. We have previously shown in our mouse model that sirolimus given in combination with cyclosporine A resulted in fewer and smaller tumors than cyclosporine A alone. In the current study, we tested the hypothesis that an anti‐inflammatory agent celecoxib applied topically after UVB exposure would further reduce UVB induced skin cancer in mice treated with cyclosporine A and sirolimus. The effect of celecoxib treatment on acute inflammation, initiation/promotion and tumor development was examined through a set of four experiments. Delayed tumor onset was observed in both tumor development experiments. Reduced tumor size and number compared to vehicle was observed when CX was administered concurrently with UVB and when CX was administered after cessation of UVB treatments, respectively. Prostaglandin E2 was confirmed to be significantly reduced in the dorsal skin of mice concurrently treated with immunosuppressants, CX and UVB for 13 weeks, suggesting a reduction in the inflammatory response could be the mechanism by which CX reduced tumorigenesis. Furthermore, topical celecoxib treatment following acute UVB exposure reduced dermal neutrophil number and activity compared to vehicle. In all of these experiments, unirradiated and vehicle treated mice were utilized as controls. In conclusion, these data suggest that even in the presence of cyclosporine A and sirolimus, topical celecoxib treatment can result in reduced inflammation, tumor number and size; properties which may be beneficial in the therapeutic reduction of skin cancer development in solid organ transplant recipients.


Journal of Biological Chemistry | 2015

Fancd2 is required for nuclear retention of FOXO3a in hematopoietic stem cell maintenance

Xiaoli Li; Jie Li; Andrew F. Wilson; Jared Sipple; Jonathan Schick; Qishen Pang

Background: Maintenance of HSCs is challenged by DNA damage and oxidative stress. Results: Fancd2 deficiency promoted cytoplasmic localization of Foxo3a in HSCs. Re-expression of Fancd2 restored nuclear Foxo3a localization and prevented HSC exhaustion. Conclusion: Fancd2 is required for nuclear retention of Foxo3a and maintaining hematopoietic repopulation of HSCs. Significance: Our results implicate an interaction between FA DNA repair and FOXO3a pathways in HSC maintenance. Functional maintenance of hematopoietic stem cells (HSCs) is constantly challenged by stresses like DNA damage and oxidative stress. Here we show that the Fanconi anemia protein Fancd2 and stress transcriptional factor Foxo3a cooperate to prevent HSC exhaustion in mice. Deletion of both Fancd2 and Foxo3a led to an initial expansion followed by a progressive decline of bone marrow stem and progenitor cells. Limiting dilution transplantation and competitive repopulating experiments demonstrated a dramatic reduction of competitive repopulating units and progressive decline in hematopoietic repopulating ability of double-knockout (dKO) HSCs. Analysis of the transcriptome of dKO HSCs revealed perturbation of multiple pathways implicated in HSC exhaustion. Fancd2 deficiency strongly promoted cytoplasmic localization of Foxo3a in HSCs, and re-expression of Fancd2 completely restored nuclear Foxo3a localization. By co-expressing a constitutively active CA-FOXO3a and WT or a nonubiquitinated Fancd2 in dKO bone marrow stem/progenitor cells, we demonstrated that Fancd2 was required for nuclear retention of CA-FOXO3a and for maintaining hematopoietic repopulation of the HSCs. Collectively, these results implicate a functional interaction between the Fanconi anemia DNA repair and FOXO3a pathways in HSC maintenance.


Journal of Immunology | 2013

Inflammation-Mediated Notch Signaling Skews Fanconi Anemia Hematopoietic Stem Cell Differentiation

Wei Du; Surya Amarachintha; Jared Sipple; Jonathan Schick; Kris A. Steinbrecher; Qishen Pang

Hematopoietic stem cells (HSCs) can either self-renew or differentiate into various types of cells of the blood lineage. Signaling pathways that regulate this choice of self-renewal versus differentiation are currently under extensive investigation. In this study, we report that deregulation of Notch signaling skews HSC differentiation in mouse models of Fanconi anemia (FA), a genetic disorder associated with bone marrow failure and progression to leukemia and other cancers. In mice expressing a transgenic Notch reporter, deletion of the Fanca or Fancc gene enhances Notch signaling in multipotential progenitors (MPPs), which is correlated with decreased phenotypic long-term HSCs and increased formation of MPP1 progenitors. Furthermore, we found an inverse correlation between Notch signaling and self-renewal capacity in FA hematopoietic stem and progenitor cells. Significantly, FA deficiency in MPPs deregulates a complex network of genes in the Notch and canonical NF-κB pathways. Genetic ablation or pharmacologic inhibition of NF-κB reduces Notch signaling in FA MPPs to near wild type level, and blocking either NF-κB or Notch signaling partially restores FA HSC quiescence and self-renewal capacity. These results suggest a functional crosstalk between Notch signaling and NF-κB pathway in regulation of HSC differentiation.


Molecular Nutrition & Food Research | 2015

Sex differences in skin carotenoid deposition and acute UVB‐induced skin damage in SKH‐1 hairless mice after consumption of tangerine tomatoes

Rachel E. Kopec; Jonathan Schick; Kathleen L. Tober; Kenneth M. Riedl; David M. Francis; Gregory S. Young; Steven J. Schwartz; Tatiana M. Oberyszyn

SCOPE UVB exposure, a major factor in the development of skin cancer, has differential sex effects. Tomato product consumption reduces the intensity of UVB-induced erythema in humans, but the mechanisms are unknown. METHODS AND RESULTS Four-week-old SKH-1 hairless mice (40 females, 40 males) were divided into two feeding groups (control or with 10% tangerine tomatoes naturally rich in UV-absorbing phytoene and phytofluene) and two UV exposure groups (with or without UV). After 10 weeks of feeding, the UV group was exposed to a single UV dose and sacrificed 48 h later. Blood and dorsal skin samples were taken for carotenoid analysis. Dorsal skin was harvested to assess sex and UV effects on carotenoid deposition, inflammation (skinfold thickness, myeloperoxidase levels), and DNA damage (cyclobutane pyrimidine dimers, p53). Females had significantly higher levels of both skin and blood carotenoids relative to males. UV exposure significantly reduced skin carotenoid levels in females but not males. Tomato consumption attenuated acute UV-induced increases in CPD in both sexes, and reduced myeloperoxidase activity and percent p53 positive epidermal cells in males. CONCLUSION Tangerine tomatoes mediate acute UV-induced skin damage in SKH-1 mice via reduced DNA damage in both sexes, and through reduced inflammation in males.


Blood | 2014

Deletion of Fanca or Fancd2 dysregulates Treg in mice

Wei Du; Ozlem Erden; Andrew Wilson; Jared Sipple; Jonathan Schick; Parinda A. Mehta; Kasiani C. Myers; Kris A. Steinbrecher; Stella M. Davies; Qishen Pang

Fanconi anemia (FA) is a genetic disorder associated with bone marrow (BM) failure and leukemia. Recent studies demonstrate variable immune defects in FA. However, the cause for FA immunodeficiency is unknown. Here we report that deletion of Fanca or Fancd2 dysregulates the suppressive activity of regulatory T cells (Tregs), shown functionally as exacerbation of graft-vs-host disease (GVHD) in mice. Recipient mice of Fanca(-/-) or Fancd2(-/-) BM chimeras exhibited severe acute GVHD after allogeneic BM transplantation (BMT). T cells from Fanca(-/-) or Fancd2(-/-) mice induced higher GVHD lethality than those from wild-type (WT) littermates. FA Tregs possessed lower proliferative suppression potential compared with WT Tregs, as demonstrated by in vitro proliferation assay and BMT. Analysis of CD25(+)Foxp3(+) Tregs indicated that loss of Fanca or Fancd2 dysregulated Foxp3 target gene expression. Additionally, CD25(+)Foxp3(+) Tregs of Fanca(-/-) or Fancd2(-/-) mice were less efficient in suppressing the production of GVHD-associated inflammatory cytokines. Consistently, aberrant NF-κB activity was observed in infiltrated T cells from FA GVHD mice. Conditional deletion of p65 in FA Tregs decreased GVHD mortality. Our study uncovers an essential role for FA proteins in maintaining Treg homeostasis, possibly explaining, at least in part, the immune deficiency reported in some FA patients.


Antioxidants & Redox Signaling | 2014

Concomitant Inactivation of Foxo3a and Fancc or Fancd2 Reveals a Two-Tier Protection from Oxidative Stress-Induced Hydrocephalus

Xiaoli Li; Liang Li; Jie Li; Jared Sipple; Jonathan Schick; Parinda A. Mehta; Stella M. Davies; Biplab Dasgupta; Ronald R. Waclaw; Qishen Pang

AIMS This study seeks at investigating the cause of hydrocephalus, and at identifying therapeutic targets for the prevention of hydrocephalus. RESULTS In this study, we show that inactivation of the Foxo3a gene in two mouse models of Fanconi anemia (FA) leads to the development of hydrocephalus in late embryonic stage and after birth. More than 50% of Foxo3a(-/-) Fancc(-/-) or Foxo3a(-/-) Fancd2(-/-) mice die during embryonic development or within 6 months of life as a result of hydrocephalus characterized by cranial distortion, dilation of the ventricular system, reduced thickness of the cerebral cortex, and disorganization of the ependymal cilia and subcommissural organ. Combined deficiency of Foxo3a and Fancc or Fancd2 not only impairs the self-renewal capacity but also markedly increases the apoptosis of neural stem and progenitor cells (NSPCs), leading to defective neurogenesis. Increased accumulation of reactive oxygen species (ROS) and subsequently de-regulated mitosis and ultimately apoptosis in the neural stem or progenitor cells is identified as one of the potential mechanisms of congenital obstructive hydrocephalus. INNOVATION The work unravels a two-tier protective mechanism for preventing oxidative stress-induced hydrocephalus. CONCLUSION The deletion of Foxo3a in FA mice increased the accumulation of ROS and subsequently de-regulated mitosis and ultimately apoptosis in the NSPCs, leading to hydrocephalus development.

Collaboration


Dive into the Jonathan Schick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jared Sipple

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qishen Pang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge