Jonathan Selleslagh
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Selleslagh.
Journal of the Marine Biological Association of the United Kingdom | 2012
Jonathan Selleslagh; Sandric Lesourd; Rachid Amara
Macrobenthic assemblages were examined in three fish estuarine nurseries and related to environmental variables, as well as fish and macrocrustaceans, in order to assess and compare the potential foraging ground value of these systems. Macrobenthos was sampled in spring 2007 in the Canche, Authie and Somme estuaries (eastern English Channel, France). A total of 17, 28 and 23 macrobenthic taxa, with a clear dominance of amphipods (mainly Bathyporeia sarsi), polychaetes and bivalves, were recorded in the three estuaries respectively. Although predators (fish and macrocrustaceans) were abundant, relatively high densities of macrobenthos were observed: 876.2 ± 389.1, 595.4 ± 197.2 and 854.3 ± 281.2 ind. m-2 in the Canche, Authie and Somme, respectively. No significant difference in species richness, Shannon-Wiener diversity and density (total and dominant groups) of macrobenthos was observed between the three estuaries. Although the analysis of similarity and similarity percentages analyses indicated that macrobenthic assemblage was variable between Authie and Somme, results showed that macrobenthos resource was relatively high and similar in the three estuaries. Taking into account these considerations, the present study indicated a similar relative importance of the Canche, Authie and Somme estuaries as foraging grounds for fish and macrocrustaceans during spring. Multivariate analysis showed that macrobenthic assemblages were mainly driven by salinity and sediment characteristics in the Canche and Authie estuaries while in the Somme estuary sediment characteristics were the most influencing parameters.
Environmental Science & Technology | 2017
Gabriel Munoz; Hélène Budzinski; Marc Babut; Hilaire Drouineau; Mathilde Lauzent; Karyn Le Menach; Jérémy Lobry; Jonathan Selleslagh; Caroline Simonnet-Laprade; Pierre Labadie
The present survey examines the trophodynamics of a suite of 19 perfluoroalkyl substances (PFASs) in a temperate macrotidal estuary (Gironde, SW France). Across the 147 biota samples (18 taxa) collected, perfluorooctane sulfonate (PFOS), perfluorooctane sulfonamide (FOSA), and C8-C14 perfluoroalkyl carboxylates (PFCAs) were the most-recurrent analytes. ΣPFASs ranged between 0.66-45 ng per g of wet weight of the whole body. Benthic organisms had relatively high ΣPFASs compared to demersal organisms and displayed specific composition profiles with higher relative abundances of C8 and C9 PFCAs. Trophic magnification factors (TMFs) were determined through the use of linear mixed effect models including censored data, thereby considering data below detection limits as well as the interspecific variability of δ15N and PFAS levels (random effects). TMFs were almost consistently >1 in the benthic food web as well as when considering all data pooled together, providing evidence for the biomagnification of several PFASs in estuarine environments. In addition, in contrast with previous observations, TMFs determined in the estuarine benthic web were found to significantly decrease with increasing chain length for C8-C14 PFCAs and C6-C8 perfluoroalkyl sulfonates. This suggests that PFAS chemical structure might not be necessarily predictive of TMFs, which are also influenced by the trophic web characteristics.
PLOS ONE | 2015
Achwak Benazza; Jonathan Selleslagh; Elsa Breton; Khalef Rabhi; Vincent Cornille; Mahmoud Bacha; Eric Lecuyer; Rachid Amara
The inter-annual variability of the fish and macrocrustacean spring community on an intertidal sandy beach near the Canche estuary (North of France) was studied from 2000 to 2013 based on weekly spring sampling over an 11-year period. Twenty-eight species representing 21 families were collected during the course of the study. The community was dominated by a few abundant species accounting for > 99% of the total species densities. Most individuals caught were young-of-the-year indicating the importance of this ecosystem for juvenile fishes and macrocrustaceans. Although standard qualitative community ecology metrics (species composition, richness, diversity, evenness and similarity) indicated notable stability over the study period, community structure showed a clear change since 2009. Densities of P. platessa, P. microps and A. tobianus decreased significantly since 2009, whereas over the period 2010-2013, the contribution of S. sprattus to total species density increased 4-fold. Co-inertia and generalised linear model analyses identified winter NAO index, water temperature, salinity and suspended particular matter as the major environmental factors explaining these changes. Although the recurrent and dense spring blooms of the Prymnesiophyte Phaeocystis globosa is one of the main potential threats in shallow waters of the eastern English Channel, no negative impact of its temporal change was detected on the fish and macrocrustacean spring community structure.
Ecosystems | 2018
Xavier Chevillot; Samuele Tecchio; Aurélie Chaalali; Géraldine Lassalle; Jonathan Selleslagh; Gérard Castelnaud; Valérie David; Guy Bachelet; Nathalie Niquil; Benoît Sautour; Jérémy Lobry
Abstract At the interface between terrestrial and marine biomes, estuaries display high ecological productivity and provide goods and services to humans. Associated with many ecological functions, they are nursery, refuge, and growing areas for many species fish. These ecological functions and services depend on both their ecological production and trophic carrying capacity and the durability of food web functioning. These transitional key habitats undergo both strong anthropogenic pressures and climatic influences that impact the structure and dynamics of estuarine biodiversity. In this context, we explore, here, three decades of the Gironde estuary ecosystem history to detect the food web’s response to global changes-induced effect on biodiversity. At least two Ecological Abrupt Shifts associated with deep modifications in the biodiversity at most trophic levels have been documented for this particular ecosystem. Three food web models were thus calibrated, one for each of the three periods discriminated by the two shifts that occurred at the end of the 1980s and the beginning of the 2000s. Results highlighted that the ecotrophic efficiency estimate for subtidal macrofauna and shrimps reached the maximum possible values during the last period. This could mean that the Gironde estuary fully reached its trophic carrying capacity due to a food limitation especially for benthos demersal fish. We also observed a significant decrease in some food web indicators (such as Average Mutual Information, System Omnivory Index, and Average Path Length) usually associated with ecosystem stress, suggesting a significant impact of global change on the Gironde estuary ecosystem health and questioning the sustainability of the ecological functions associated with this ecosystem.
Estuarine Coastal and Shelf Science | 2008
Jonathan Selleslagh; Rachid Amara
Estuarine Coastal and Shelf Science | 2009
Jonathan Selleslagh; Rachid Amara; Pascal Laffargue; Sandric Lesourd; Mario Lepage; Michel Girardin
Hydrobiologia | 2009
Rachid Amara; Jonathan Selleslagh; G. Billon; Christophe Minier
Estuarine Coastal and Shelf Science | 2008
Jonathan Selleslagh; Rachid Amara
Estuarine Coastal and Shelf Science | 2012
Jonathan Selleslagh; Jérémy Lobry; Rachid Amara; Jean-Michel Brylinski; Philippe Boët
Estuarine Coastal and Shelf Science | 2012
Jonathan Selleslagh; Jérémy Lobry; Aimé Roger N'Zigou; Guy Bachelet; Hugues Blanchet; Aurélie Chaalali; Benoît Sautour; Philippe Boët