Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Spindler is active.

Publication


Featured researches published by Jonathan Spindler.


PLOS Pathogens | 2014

Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing

Datsen George Wei; Vicki Chiang; Elizabeth Fyne; Mini Balakrishnan; Tiffany Barnes; Michael Graupe; Joseph Hesselgesser; Alivelu Irrinki; Jeffrey P. Murry; George Stepan; Kirsten M. Stray; Angela Tsai; Helen Yu; Jonathan Spindler; Mary Kearney; Celsa A. Spina; Deborah McMahon; Jacob Lalezari; Derek D. Sloan; John W. Mellors; Romas Geleziunas; Tomas Cihlar

Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.


Journal of Virology | 2006

Brd4 Is Required for E2-Mediated Transcriptional Activation but Not Genome Partitioning of All Papillomaviruses

M. G. McPhillips; Jaquelline G. Oliveira; Jonathan Spindler; R. Mitra; Alison A. McBride

ABSTRACT Bromodomain protein 4 (Brd4) has been identified as the cellular binding target through which the E2 protein of bovine papillomavirus type 1 links the viral genome to mitotic chromosomes. This tethering ensures retention and efficient partitioning of genomes to daughter cells following cell division. E2 is also a regulator of viral gene expression and a replication factor, in association with the viral E1 protein. In this study, we show that E2 proteins from a wide range of papillomaviruses interact with Brd4, albeit with variations in efficiency. Moreover, disruption of the E2-Brd4 interaction abrogates the transactivation function of E2, indicating that Brd4 is required for E2-mediated transactivation of all papillomaviruses. However, the interaction of E2 and Brd4 is not required for genome partitioning of all papillomaviruses since a number of papillomavirus E2 proteins associate with mitotic chromosomes independently of Brd4 binding. Furthermore, mutations in E2 that disrupt the interaction with Brd4 do not affect the ability of these E2s to associate with chromosomes. Thus, while all papillomaviruses attach their genomes to cellular chromosomes to facilitate genome segregation, they target different cellular binding partners. In summary, the E2 proteins from many papillomaviruses, including the clinically important alpha genus human papillomaviruses, interact with Brd4 to mediate transcriptional activation function but not all depend on this interaction to efficiently associate with mitotic chromosomes.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo

Francesco R. Simonetti; Michele D. Sobolewski; Elizabeth Fyne; Wei Shao; Jonathan Spindler; Junko Hattori; Elizabeth M. Anderson; Sarah A. Watters; Shawn A. Hill; Xiaolin Wu; David G. Wells; Li Su; Brian T. Luke; Elias K. Halvas; Guillaume Besson; Kerri J. Penrose; Zhiming Yang; Richard Kwan; Carter Van Waes; Thomas S. Uldrick; Deborah Citrin; Joseph A. Kovacs; Michael A. Polis; Catherine Rehm; Robert J. Gorelick; Michael Piatak; Brandon F. Keele; Mary Kearney; John M. Coffin; Stephen H. Hughes

Significance Reservoirs of HIV-infected cells persist during antiretroviral therapy, and understanding persistence is essential to develop HIV curative strategies. During replication, HIV integrates into the host genome; most proviruses are not infectious, but some with replication-competent HIV persist. Cells with integrated HIV can proliferate, potentially expanding the reservoir, but whether cells with replication-competent HIV actually undergo expansion is unknown. HIV reactivation is often lethal to infected cells, and others have reported finding no replication-competent HIV in expanded populations. We describe a highly expanded clone containing infectious HIV that was the source of viremia for years in a patient. Clonally expanded populations can represent a long-lived reservoir of HIV. Curative strategies will require targeting this persistence mechanism. Reservoirs of infectious HIV-1 persist despite years of combination antiretroviral therapy and make curing HIV-1 infections a major challenge. Most of the proviral DNA resides in CD4+T cells. Some of these CD4+T cells are clonally expanded; most of the proviruses are defective. It is not known if any of the clonally expanded cells carry replication-competent proviruses. We report that a highly expanded CD4+ T-cell clone contains an intact provirus. The highly expanded clone produced infectious virus that was detected as persistent plasma viremia during cART in an HIV-1–infected patient who had squamous cell cancer. Cells containing the intact provirus were widely distributed and significantly enriched in cancer metastases. These results show that clonally expanded CD4+T cells can be a reservoir of infectious HIV-1.


Retrovirology | 2013

Analysis of 454 sequencing error rate, error sources, and artifact recombination for detection of Low-frequency drug resistance mutations in HIV-1 DNA.

Wei Shao; Valerie F. Boltz; Jonathan Spindler; Mary Kearney; Frank Maldarelli; John W. Mellors; Claudia Stewart; Natalia Volfovsky; Alexander Levitsky; Robert M. Stephens; John M. Coffin

Background454 sequencing technology is a promising approach for characterizing HIV-1 populations and for identifying low frequency mutations. The utility of 454 technology for determining allele frequencies and linkage associations in HIV infected individuals has not been extensively investigated. We evaluated the performance of 454 sequencing for characterizing HIV populations with defined allele frequencies.ResultsWe constructed two HIV-1 RT clones. Clone A was a wild type sequence. Clone B was identical to clone A except it contained 13 introduced drug resistant mutations. The clones were mixed at ratios ranging from 1% to 50% and were amplified by standard PCR conditions and by PCR conditions aimed at reducing PCR-based recombination. The products were sequenced using 454 pyrosequencing. Sequence analysis from standard PCR amplification revealed that 14% of all sequencing reads from a sample with a 50:50 mixture of wild type and mutant DNA were recombinants. The majority of the recombinants were the result of a single crossover event which can happen during PCR when the DNA polymerase terminates synthesis prematurely. The incompletely extended template then competes for primer sites in subsequent rounds of PCR. Although less often, a spectrum of other distinct crossover patterns was also detected. In addition, we observed point mutation errors ranging from 0.01% to 1.0% per base as well as indel (insertion and deletion) errors ranging from 0.02% to nearly 50%. The point errors (single nucleotide substitution errors) were mainly introduced during PCR while indels were the result of pyrosequencing. We then used new PCR conditions designed to reduce PCR-based recombination. Using these new conditions, the frequency of recombination was reduced 27-fold. The new conditions had no effect on point mutation errors. We found that 454 pyrosequencing was capable of identifying minority HIV-1 mutations at frequencies down to 0.1% at some nucleotide positions.ConclusionStandard PCR amplification results in a high frequency of PCR-introduced recombination precluding its use for linkage analysis of HIV populations using 454 pyrosequencing. We designed a new PCR protocol that resulted in a much lower recombination frequency and provided a powerful technique for linkage analysis and haplotype determination in HIV-1 populations. Our analyses of 454 sequencing results also demonstrated that at some specific HIV-1 drug resistant sites, mutations can reliably be detected at frequencies down to 0.1%.


Journal of Virology | 2009

The Human Papillomavirus Type 8 E2 Tethering Protein Targets the Ribosomal DNA Loci of Host Mitotic Chromosomes

Atasi Poddar; Shawna C. Reed; Maria G. McPhillips; Jonathan Spindler; Alison A. McBride

ABSTRACT For many papillomaviruses, the viral protein E2 tethers the viral genome to the host mitotic chromosomes to ensure persistent, long-term maintenance of the genome during cell division. Our previous studies of E2 proteins from different genera of papillomaviruses have shown that they bind to different regions of the host chromosomes during mitosis. For example, bovine papillomavirus type 1 (BPV-1) E2 binds to all chromosomes as small speckles in complex with the cellular protein Brd4. In contrast, the human papillomavirus type 8 (HPV-8) E2 protein binds as large speckles at the pericentromeric regions of chromosomes. Here we show that these speckles do not contain Brd4, and unlike that of BPV-1, the N-terminal Brd4-interacting domain of HPV-8 E2 is not required for chromosome binding. In contrast to BPV-1 E2, the HPV-8 E2 protein targets the short arms of acrocentric mitotic chromosomes. Furthermore, the E2 protein interacts with the repeated ribosomal DNA genes found in this location and colocalizes with UBF, the RNA polymerase I transcription factor. Therefore, HPV-8 E2 genome tethering occurs by a Brd4-independent mechanism through a novel interaction with specific regions of mitotic chromosomes. Thus, a wide range of viruses have adopted the strategy of linking their genomes to host chromosomes, but individual viruses use different chromosomal targets. Characterization of these targets will enable the development of antiviral therapies to eliminate the viral genomes from infected cells.


PLOS Pathogens | 2017

Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir

John K. Bui; Michele D. Sobolewski; Brandon F. Keele; Jonathan Spindler; Andrew Musick; Ann Wiegand; Brian T. Luke; Wei Shao; Stephen H. Hughes; John M. Coffin; Mary Kearney; John W. Mellors; Susan R. Ross

The major obstacle to curing HIV infection is the persistence of cells with intact proviruses that can produce replication-competent virus. This HIV reservoir is believed to exist primarily in CD4+ T-cells and is stable despite years of suppressive antiretroviral therapy. A potential mechanism for HIV persistence is clonal expansion of infected cells, but how often such clones carry replication-competent proviruses has been controversial. Here, we used single-genome sequencing to probe for identical HIV sequence matches among viruses recovered in different viral outgrowth cultures and between the sequences of outgrowth viruses and proviral or intracellular HIV RNA sequences in uncultured blood mononuclear cells from eight donors on suppressive ART with diverse proviral populations. All eight donors had viral outgrowth virus that was fully susceptible to their current ART drug regimen. Six of eight donors studied had identical near full-length HIV RNA sequences recovered from different viral outgrowth cultures, and one of the two remaining donors had identical partial viral sequence matches between outgrowth virus and intracellular HIV RNA. These findings provide evidence that clonal expansion of HIV-infected cells is an important mechanism of reservoir persistence that should be targeted to cure HIV infection.


PLOS ONE | 2012

Multiple Sources of Contamination in Samples from Patients Reported to Have XMRV Infection

Mary Kearney; Jonathan Spindler; Ann Wiegand; Wei Shao; Elizabeth M. Anderson; Frank Maldarelli; Francis W. Ruscetti; John W. Mellors; Steve H. Hughes; Stuart J. Grice; John M. Coffin

Xenotropic murine leukemia virus (MLV)-related retrovirus (XMRV) was reported to be associated with prostate cancer by Urisman, et al. in 2006 and chronic fatigue syndrome (CFS) by Lombardi, et al. in 2009. To investigate this association, we independently evaluated plasma samples from 4 patients with CFS reported by Lombardi, et al. to have XMRV infection and from 5 healthy controls reported to be XMRV uninfected. We also analyzed viral sequences obtained from supernatants of cell cultures found to contain XMRV after coculture with 9 clinical samples from 8 patients. A qPCR assay capable of distinguishing XMRV from endogenous MLVs showed that the viral sequences detected in the CFS patient plasma behaved like endogenous MLVs and not XMRV. Single-genome sequences (N = 89) from CFS patient plasma were indistinguishable from endogenous MLVs found in the mouse genome that are distinct from XMRV. By contrast, XMRV sequences were detected by qPCR in 2 of the 5 plasma samples from healthy controls (sequencing of the qPCR product confirmed XMRV not MLV). Single-genome sequences (N = 234) from the 9 culture supernatants reportedly positive for XMRV were indistinguishable from XMRV sequences obtained from 22Rv1 and XMRV-contaminated 293T cell-lines. These results indicate that MLV DNA detected in the plasma samples from CFS patients evaluated in this study was from contaminating mouse genomic DNA and that XMRV detected in plasma samples from healthy controls and in cultures of patient samples was due to cross-contamination with XMRV (virus or nucleic acid).


Journal of Virology | 2008

Dimerization of the Papillomavirus E2 Protein Is Required for Efficient Mitotic Chromosome Association and Brd4 Binding

Juan Cardenas-Mora; Jonathan Spindler; Moon Kyoo Jang; Alison A. McBride

ABSTRACT The E2 proteins of several papillomaviruses link the viral genome to mitotic chromosomes to ensure retention and the efficient partitioning of genomes into daughter cells following cell division. Bovine papillomavirus type 1 E2 binds to chromosomes in a complex with Brd4, a cellular bromodomain protein. Interaction with Brd4 is also important for E2-mediated transcriptional regulation. The transactivation domain of E2 is crucial for interaction with the Brd4 protein; proteins lacking or mutated in this domain do not interact with Brd4. However, we found that the C-terminal DNA binding/dimerization domain of E2 is also required for efficient binding to Brd4. Mutations that eliminated the DNA binding function of E2 had no effect on the ability of E2 to interact with Brd4, but an E2 protein with a mutation that disrupted C-terminal dimerization bound Brd4 with greatly reduced efficiency. Furthermore, E2 proteins in which the C-terminal domains were replaced with the dimeric DNA binding domain of EBNA-1 or Gal4 bound efficiently to the Brd4 protein, but the replacement of the E2 C-terminal domain with a monomeric red fluorescent protein did not rescue efficient Brd4 binding. Thus, E2 bound to Brd4 most efficiently as a dimer. To prove this finding further, the E2 DNA binding domain was replaced with an FKBP12-derived domain in which dimerization was regulated by a bivalent ligand. This fusion protein bound Brd4 efficiently only in the presence of the ligand, confirming that a dimer of E2 was required. Correspondingly, E2 proteins that could dimerize were able to bind to mitotic chromosomes much more efficiently than monomeric E2 polypeptides.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART

Ann Wiegand; Jonathan Spindler; Feiyu F. Hong; Wei Shao; Joshua C. Cyktor; Anthony R. Cillo; Elias K. Halvas; John M. Coffin; John W. Mellors; Mary Kearney

Significance Previously, we showed that the virus that persists in human immunodeficiency virus (HIV)-infected individuals on antiretroviral therapy (ART) is derived from cells infected prior to initiating treatment. We also showed that HIV-infected cells can undergo cellular proliferation during ART. However, it is not known what fraction of infected cells that persist during ART are latent and what fraction are actively producing HIV RNA. The method described here was developed to determine the fraction of infected cells that produce HIV RNA and the levels of HIV RNA in single cells, including cells that have undergone cellular proliferation. Additionally, the method can be used to identify the sources of rebound virus after stopping ART and the efficacy of experimental interventions designed to cure HIV infection. Little is known about the fraction of human immunodeficiency virus type 1 (HIV-1) proviruses that express unspliced viral RNA in vivo or about the levels of HIV RNA expression within single infected cells. We developed a sensitive cell-associated HIV RNA and DNA single-genome sequencing (CARD-SGS) method to investigate fractional proviral expression of HIV RNA (1.3-kb fragment of p6, protease, and reverse transcriptase) and the levels of HIV RNA in single HIV-infected cells from blood samples obtained from individuals with viremia or individuals on long-term suppressive antiretroviral therapy (ART). Spiking experiments show that the CARD-SGS method can detect a single cell expressing HIV RNA. Applying CARD-SGS to blood mononuclear cells in six samples from four HIV-infected donors (one with viremia and not on ART and three with viremia suppressed on ART) revealed that an average of 7% of proviruses (range: 2–18%) expressed HIV RNA. Levels of expression varied from one to 62 HIV RNA molecules per cell (median of 1). CARD-SGS also revealed the frequent expression of identical HIV RNA sequences across multiple single cells and across multiple time points in donors on suppressive ART consistent with constitutive expression of HIV RNA in infected cell clones. Defective proviruses were found to express HIV RNA at levels similar to those proviruses that had no obvious defects. CARD-SGS is a useful tool to characterize fractional proviral expression in single infected cells that persist despite ART and to assess the impact of experimental interventions on proviral populations and their expression.


PLOS Medicine | 2017

HIV-1 persistence following extre277277mely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study

Timothy J. Henrich; Hiroyu Hatano; Oliver Bacon; Louise E. Hogan; Rachel L. Rutishauser; Alison L. Hill; Mary Kearney; Elizabeth M. Anderson; Susan Buchbinder; Stephanie E. Cohen; Mohamed Abdel-Mohsen; Christopher W. Pohlmeyer; Rémi Fromentin; Albert Liu; Joseph M. McCune; Jonathan Spindler; Kelly Metcalf-Pate; Kristen S. Hobbs; Cassandra Thanh; Erica A. Gibson; Daniel R. Kuritzkes; Robert F. Siliciano; Richard W. Price; Douglas D. Richman; Nicolas Chomont; Janet D. Siliciano; John W. Mellors; Steven A. Yukl; Joel N. Blankson; Teri Liegler

Background It is unknown if extremely early initiation of antiretroviral therapy (ART) may lead to long-term ART-free HIV remission or cure. As a result, we studied 2 individuals recruited from a pre-exposure prophylaxis (PrEP) program who started prophylactic ART an estimated 10 days (Participant A; 54-year-old male) and 12 days (Participant B; 31-year-old male) after infection with peak plasma HIV RNA of 220 copies/mL and 3,343 copies/mL, respectively. Extensive testing of blood and tissue for HIV persistence was performed, and PrEP Participant A underwent analytical treatment interruption (ATI) following 32 weeks of continuous ART. Methods and findings Colorectal and lymph node tissues, bone marrow, cerebral spinal fluid (CSF), plasma, and very large numbers of peripheral blood mononuclear cells (PBMCs) were obtained longitudinally from both participants and were studied for HIV persistence in several laboratories using molecular and culture-based detection methods, including a murine viral outgrowth assay (mVOA). Both participants initiated PrEP with tenofovir/emtricitabine during very early Fiebig stage I (detectable plasma HIV-1 RNA, antibody negative) followed by 4-drug ART intensification. Following peak viral loads, both participants experienced full suppression of HIV-1 plasma viremia. Over the following 2 years, no further HIV could be detected in blood or tissue from PrEP Participant A despite extensive sampling from ileum, rectum, lymph nodes, bone marrow, CSF, circulating CD4+ T cell subsets, and plasma. No HIV was detected from tissues obtained from PrEP Participant B, but low-level HIV RNA or DNA was intermittently detected from various CD4+ T cell subsets. Over 500 million CD4+ T cells were assayed from both participants in a humanized mouse outgrowth assay. Three of 8 mice infused with CD4+ T cells from PrEP Participant B developed viremia (50 million input cells/surviving mouse), but only 1 of 10 mice infused with CD4+ T cells from PrEP Participant A (53 million input cells/mouse) experienced very low level viremia (201 copies/mL); sequence confirmation was unsuccessful. PrEP Participant A stopped ART and remained aviremic for 7.4 months, rebounding with HIV RNA of 36 copies/mL that rose to 59,805 copies/mL 6 days later. ART was restarted promptly. Rebound plasma HIV sequences were identical to those obtained during acute infection by single-genome sequencing. Mathematical modeling predicted that the latent reservoir size was approximately 200 cells prior to ATI and that only around 1% of individuals with a similar HIV burden may achieve lifelong ART-free remission. Furthermore, we observed that lymphocytes expressing the tumor marker CD30 increased in frequency weeks to months prior to detectable HIV-1 RNA in plasma. This study was limited by the small sample size, which was a result of the rarity of individuals presenting during hyperacute infection. Conclusions We report HIV relapse despite initiation of ART at one of the earliest stages of acute HIV infection possible. Near complete or complete loss of detectable HIV in blood and tissues did not lead to indefinite ART-free HIV remission. However, the small numbers of latently infected cells in individuals treated during hyperacute infection may be associated with prolonged ART-free remission.

Collaboration


Dive into the Jonathan Spindler's collaboration.

Top Co-Authors

Avatar

Mary Kearney

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Wiegand

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Frank Maldarelli

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elizabeth M. Anderson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen H. Hughes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Valerie F. Boltz

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge