Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan W. Lowery is active.

Publication


Featured researches published by Jonathan W. Lowery.


Stem Cells International | 2016

Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

Shoichiro Kokabu; Jonathan W. Lowery; Eijiro Jimi

Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment.


Biochemical and Biophysical Research Communications | 2015

Muscle regulatory factors regulate T1R3 taste receptor expression.

Shoichiro Kokabu; Jonathan W. Lowery; Takashi Toyono; Yuji Seta; Suzuro Hitomi; Tsuyoshi Sato; Yuichiro Enoki; Masahiko Okubo; Yosuke Fukushima; Tetsuya Yoda

T1R3 is a T1R class of G protein-coupled receptors, composing subunit of the umami taste receptor when complexed with T1R1. T1R3 was originally discovered in gustatory tissue but is now known to be expressed in a wide variety of tissues and cell types such the intestine, pancreatic β-cells, skeletal muscle, and heart. In addition to taste recognition, the T1R1/T1R3 complex functions as an amino acid sensor and has been proposed to be a control mechanism for the secretion of hormones, such as cholecystokinin, insulin, and duodenal HCO3(-) and activates the mammalian rapamycin complex 1 (MTORC1) to inhibit autophagy. T1R3 knockout mice have increased rate of autophagy in the heart, skeletal muscle and liver. Thus, T1R3 has multiple physiological functions and is widely expressed inxa0vivo. However, the exact mechanisms regulating T1R3 expression are largely unknown. Here, we used comparative genomics and functional analyses to characterize the genomic region upstream of the annotated transcriptional start of human T1R3. This revealed that the T1R3 promoter in human and mouse resides in an evolutionary conserved region (ECR). We also identified a repressive element located upstream of the human T1R3 promoter that has relatively high degree of conservation with rhesus macaque. Additionally, the muscle regulatory factors MyoD and Myogenin regulate T1R3 expression and T1R3 expression increases with skeletal muscle differentiation of murine myoblast C2C12 cells. Taken together, our study raises the possibility that MyoD and Myogenin might control skeletal muscle metabolism and homeostasis through the regulation of T1R3 promoter activity.


Stem Cells International | 2016

A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives

Jonathan W. Lowery; Brice Brookshire; Vicki Rosen

Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.


Journal of Physiology and Biochemistry | 2018

Loss of the nutrient sensor TAS1R3 leads to reduced bone resorption

Michael S. Eaton; Nicholas Weinstein; Jordan B. Newby; Maggie M. Plattes; Hanna E. Foster; Jon W. Arthur; Taylor D. Ward; Stephen R. Shively; Ryann Shor; Justin Nathan; Hannah M. Davis; Lilian I. Plotkin; Eric M. Wauson; Brian J. Dewar; Aaron Broege; Jonathan W. Lowery

The taste receptor type 1 (TAS1R) family of heterotrimeric G protein-coupled receptors participates in monitoring energy and nutrient status. TAS1R member 3 (TAS1R3) is a bi-functional protein that recognizes amino acids such as L-glycine and L-glutamate or sweet molecules such as sucrose and fructose when dimerized with TAS1R member 1 (TAS1R1) or TAS1R member 2 (TAS1R2), respectively. It was recently reported that deletion of TAS1R3 expression in Tas1R3 mutant mice leads to increased cortical bone mass but the underlying cellular mechanism leading to this phenotype remains unclear. Here, we independently corroborate the increased thickness of cortical bone in femurs of 20-week-old male Tas1R3 mutant mice and confirm that Tas1R3 is expressed in the bone environment. Tas1R3 is expressed in undifferentiated bone marrow stromal cells (BMSCs) in vitro and its expression is maintained during BMP2-induced osteogenic differentiation. However, levels of the bone formation marker procollagen type I N-terminal propeptide (PINP) are unchanged in the serum of 20-week-old Tas1R3 mutant mice as compared to controls. In contrast, levels of the bone resorption marker collagen type I C-telopeptide are reduced greater than 60% in Tas1R3 mutant mice. Consistent with this, Tas1R3 and its putative signaling partner Tas1R2 are expressed in primary osteoclasts and their expression levels positively correlate with differentiation status. Collectively, these findings suggest that high bone mass in Tas1R3 mutant mice is due to uncoupled bone remodeling with reduced osteoclast function and provide rationale for future experiments examining the cell-type-dependent role for TAS1R family members in nutrient sensing in postnatal bone remodeling.


Cold Spring Harbor Perspectives in Biology | 2018

Bone Morphogenetic Protein–Based Therapeutic Approaches

Jonathan W. Lowery; Vicki Rosen

Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor (TGF)-β family of ligands and exert most of their effects through the canonical effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the development and homeostasis of numerous human organ systems. Aberrations in BMP pathways or their regulation are increasingly associated with diverse human pathologies, and there is an urgent and growing need to develop effective approaches to modulate BMP signaling in the clinic. In this review, we provide a wide perspective on diseases and/or conditions associated with dysregulated BMP signal transduction, outline the current strategies available to modulate BMP pathways, highlight emerging second-generation technologies, and postulate prospective avenues for future investigation.


The Journal of the American Osteopathic Association | 2016

Clinical Relevance and Mechanisms of Antagonism Between the BMP and Activin/TGF-β Signaling Pathways

Aaron M. Hudnall; Jon W. Arthur; Jonathan W. Lowery

The transforming growth factor β (TGF-β) superfamily is a large group of signaling molecules that participate in embryogenesis, organogenesis, and tissue homeostasis. These molecules are present in all animal genomes. Dysfunction in the regulation or activity of this superfamilys components underlies numerous human diseases and developmental defects. There are 2 distinct arms downstream of the TGF-β superfamily ligands-the bone morphogenetic protein (BMP) and activin/TGF-β signaling pathways-and these 2 responses can oppose one anothers effects, most notably in disease states. However, studies have commonly focused on a single arm of the TGF-β superfamily, and the antagonism between these pathways is unknown in most physiologic and pathologic contexts. In this review, the authors summarize the clinically relevant scenarios in which the BMP and activin/TGF-β pathways reportedly oppose one another and identify several molecular mechanisms proposed to mediate this interaction. Particular attention is paid to experimental findings that may be informative to human pathology to highlight potential therapeutic approaches for future investigation.


Molecules | 2017

On the Emerging Role of the Taste Receptor Type 1 (T1R) Family of Nutrient-Sensors in the Musculoskeletal System

Shoichiro Kokabu; Jonathan W. Lowery; Takashi Toyono; Tsuyoshi Sato; Tetsuya Yoda

The special sense of taste guides and guards food intake and is essential for body maintenance. Salty and sour tastes are sensed via ion channels or gated ion channels while G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family sense sweet and umami tastes and GPCRs of the taste receptor type 2 (T2R) family sense bitter tastes. T1R and T2R receptors share similar downstream signaling pathways that result in the stimulation of phospholipase-C-β2. The T1R family includes three members that form heterodimeric complexes to recognize either amino acids or sweet molecules such as glucose. Although these functions were originally described in gustatory tissue, T1R family members are expressed in numerous non-gustatory tissues and are now viewed as nutrient sensors that play important roles in monitoring global glucose and amino acid status. Here, we highlight emerging evidence detailing the function of T1R family members in the musculoskeletal system and review these findings in the context of the musculoskeletal diseases sarcopenia and osteoporosis, which are major public health problems among the elderly that affect locomotion, activities of daily living, and quality of life. These studies raise the possibility that T1R family member function may be modulated for therapeutic benefit.


Journal of Biological Chemistry | 2017

The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor

Shoichiro Kokabu; Chihiro Nakatomi; Takuma Matsubara; Yusuke Ono; William N. Addison; Jonathan W. Lowery; Mariko Urata; Aaron M. Hudnall; Suzuro Hitomi; Mitsushiro Nakatomi; Tsuyoshi Sato; Kenji Osawa; Tetsuya Yoda; Vicki Rosen; Eijiro Jimi

Satellite cells are skeletal muscle stem cells that provide myonuclei for postnatal muscle growth, maintenance, and repair/regeneration in adults. Normally, satellite cells are mitotically quiescent, but they are activated in response to muscle injury, in which case they proliferate extensively and exhibit up-regulated expression of the transcription factor MyoD, a master regulator of myogenesis. MyoD forms a heterodimer with E proteins through their basic helix-loop-helix domain, binds to E boxes in the genome and thereby activates transcription at muscle-specific promoters. The central role of MyoD in muscle differentiation has increased interest in finding potential MyoD regulators. Here we identified transducin-like enhancer of split (TLE3), one of the Groucho/TLE family members, as a regulator of MyoD function during myogenesis. TLE3 was expressed in activated and proliferative satellite cells in which increased TLE3 levels suppressed myogenic differentiation, and, conversely, reduced TLE3 levels promoted myogenesis with a concomitant increase in proliferation. We found that, via its glutamine- and serine/proline-rich domains, TLE3 interferes with MyoD function by disrupting the association between the basic helix-loop-helix domain of MyoD and E proteins. Our findings indicate that TLE3 participates in skeletal muscle homeostasis by dampening satellite cell differentiation via repression of MyoD transcriptional activity.


Physiological Reviews | 2018

The BMP Pathway and Its Inhibitors in the Skeleton

Jonathan W. Lowery; Vicki Rosen

Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor-β family of ligands. BMPs exhibit widespread utility and pleiotropic, context-dependent effects, and the strength and duration of BMP pathway signaling is tightly regulated at numerous levels via mechanisms operating both inside and outside the cell. Defects in the BMP pathway or its regulation underlie multiple human diseases of different organ systems. Yet much remains to be discovered about the BMP pathway in its original context, i.e., the skeleton. In this review, we provide a comprehensive overview of the intricacies of the BMP pathway and its inhibitors in bone development, homeostasis, and disease. We frame the content of the review around major unanswered questions for which incomplete evidence is available. First, we consider the gene regulatory network downstream of BMP signaling in osteoblastogenesis. Next, we examine why some BMP ligands are more osteogenic than others and what factors limit BMP signaling during osteoblastogenesis. Then we consider whether specific BMP pathway components are required for normal skeletal development, and if the pathway exerts endogenous effects in the aging skeleton. Finally, we propose two major areas of need of future study by the field: greater resolution of the gene regulatory network downstream of BMP signaling in the skeleton, and an expanded repertoire of reagents to reliably and specifically inhibit individual BMP pathway components.


Stem Cells International | 2016

Targeted Strategies to Modulate Stem-Cell-Relevant Pathways.

Jonathan W. Lowery; James A. Ankrum; Shoichiro Kokabu; Renjing Liu

Modulation of stem cell behavior is of significant interest to the biomedical community and could lead to novel therapeutic advances in treating disease. Achieving this goal requires specific strategies that manipulate the pathways regulating stem cell plasticity and behavior. The accumulating evidence indicates that just a few main signaling pathways regulate most types of stem cells, which suggests that strategies that modulate one type of stem cell might hold broad usefulness. However, as stem cell research becomes more and more specialized, investigators studying a particular pathway or behavior in one specialty can miss a breakthrough advancement made in another specialty.

Collaboration


Dive into the Jonathan W. Lowery's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eijiro Jimi

Kyushu Dental University

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Yoda

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar

Tsuyoshi Sato

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar

Suzuro Hitomi

Kyushu Dental University

View shared research outputs
Top Co-Authors

Avatar

Takashi Toyono

Kyushu Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge