Jonathan Ziveyi
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathan Ziveyi.
Applied Mathematics and Computation | 2013
Carl Chiarella; Jonathan Ziveyi
In this paper we consider the pricing of an American call option whose underlying asset dynamics evolve under the influence of two independent stochastic volatility processes as proposed in Christoffersen, Heston and Jacobs (2009) [13]. We consider the associated partial differential equation (PDE) for the option price and its solution. An integral expression for the general solution of the PDE is presented by using Duhamels principle and this is expressed in terms of the joint transition density function for the driving stochastic processes. For the particular form of the underlying dynamics we are able to solve the Kolmogorov PDE for the joint transition density function by first transforming it to a corresponding system of characteristic PDEs using a combination of Fourier and Laplace transforms. The characteristic PDE system is solved by using the method of characteristics. With the full price representation in place, numerical results are presented by first approximating the early exercise surface with a bivariate log linear function. We perform numerical comparisons with results generated by the method of lines algorithm and note that our approach provides quite good accuracy.
Archive | 2010
Carl Chiarella; Andrew Ziogas; Jonathan Ziveyi
We consider the evaluation of American options on dividend paying stocks in the case where the underlying asset price evolves according to Heston’s stochastic volatility model in (Heston, Rev. Financ. Stud. 6:327–343, 1993). We solve the Kolmogorov partial differential equation associated with the driving stochastic processes using a combination of Fourier and Laplace transforms and so obtain the joint transition probability density function for the underlying processes. We then use this expression in applying Duhamel’s principle to obtain the expression for an American call option price, which depends upon an unknown early exercise surface. By evaluating the pricing equation along the free surface boundary, we obtain the corresponding integral equation for the early exercise surface.
Quantitative Finance | 2014
Carl Chiarella; Jonathan Ziveyi
This paper extends the integral transform approach of McKean (1965) and Chiarella and Ziogas (2005) to the pricing of American options written on more than one underlying asset under the Black and Scholes (1973) framework. A bivariate transition density function of the two underlying stochastic processes is derived by solving the associated backward Kolmogorov partial differential equation. Fourier transform techniques are used to transform the partial differential equation to a corresponding ordinary differential equation whose solution can be readily found by using the integrating factor method. An integral expression of the American option written on any two assets is then obtained by applying Duhamel’s principle. A numerical algorithm for calculating American spread call option prices is given as an example, with the corresponding early exercise boundaries approximated by linear functions. Numerical results are presented and comparisons made with other alternative approaches.
Quantitative Finance | 2018
Jennifer Alonso-García; Oliver Michael Wood; Jonathan Ziveyi
This paper extends the Fourier-cosine (COS) method to the pricing and hedging of variable annuities embedded with guaranteed minimum withdrawal benefit (GMWB) riders. The COS method facilitates efficient computation of prices and hedge ratios of the GMWB riders when the underlying fund dynamics evolve under the influence of the general class of Lévy processes. Formulae are derived to value the contract at each withdrawal date using a backward recursive dynamic programming algorithm. Numerical comparisons are performed with results presented in Bacinello et al. [Scand. Actuar. J., 2014, 1–20], and Luo and Shevchenko [Int. J. Financ. Eng., 2014, 2, 1–24], to confirm the accuracy of the method. The efficiency of the proposed method is assessed by making comparisons with the approach presented in Bacinello et al. [op. cit.]. We find that the COS method presents highly accurate results with notably fast computational times. The valuation framework forms the basis for GMWB hedging. A local risk minimisation approach to hedging intra-withdrawal date risks is developed. A variety of risk measures are considered for minimisation in the general Lévy framework. While the second moment and variance have been considered in existing literature, we show that the Value-at-Risk (VaR) may also be of interest as a risk measure to minimise risk in variable annuities portfolios.
Scandinavian Actuarial Journal | 2015
José Da Fonseca; Jonathan Ziveyi
Guarantees embedded variable annuity contracts exhibit option-like payoff features and the pricing of such instruments naturally leads to risk neutral valuation techniques. This paper considers the pricing of two types of guarantees; namely, the Guaranteed Minimum Maturity Benefit and the Guaranteed Minimum Death Benefit riders written on several underlying assets whose dynamics are given by affine stochastic processes. Within the standard affine framework for the underlying mortality risk, stochastic volatility and correlation risk, we develop the key ingredients to perform the pricing of such guarantees. The model implies that the corresponding characteristic function for the state variables admits a closed form expression. We illustrate the methodology for two possible payoffs for the guarantees leading to prices that can be obtained through numerical integration. Using typical values for the parameters, an implementation of the model is provided and underlines the significant impact of the assets’ correlation structure on the guarantee prices.
Research Paper Series | 2011
Carl Chiarella; Jonathan Ziveyi
In this paper we consider the pricing of an American call option whose underlying asset dynamics evolve under the influence of two independent stochastic volatility processes of the Heston (1993) type. We derive the associated partial differential equation (PDE) of the option price using hedging arguments and Ito’s lemma. An integral expression for the general solution of the PDE is presented by using Duhamel’s principle and this is expressed in terms of the joint transition density function for the driving stochastic processes. We solve the Kolmogorov PDE for the joint transition density function by first transforming it to a corresponding system of characteristic PDEs using a combination of Fourier and Laplace transforms. The characteristic PDE system is solved by using the method of characteristics. With the full price representation in place, numerical results are presented by first approximating the early exercise surface with a bivariate log linear function. We perform numerical comparisons with results generated by the method of lines algorithm and note that our approach is very competitive in terms of accuracy.
Insurance Mathematics & Economics | 2016
Yang Shen; Michael Sherris; Jonathan Ziveyi
We present a numerical approach to the pricing of guaranteed minimum maturity benefits embedded in variable annuity contracts in the case where the guarantees can be surrendered at any time prior to maturity that improves on current approaches. Surrender charges are important in practice and are imposed as a way of discouraging early termination of variable annuity contracts. We formulate the valuation framework and focus on the surrender option as an American put option pricing problem and derive the corresponding pricing partial differential equation by using hedging arguments and Ito’s Lemma. Given the underlying stochastic evolution of the fund, we also present the associated transition density partial differential equation allowing us to develop solutions. An explicit integral expression for the pricing partial differential equation is then presented with the aid of Duhamel’s principle. Our analysis is relevant to risk management applications since we derive an expression of the delta for the sensitivity analysis of the guarantee fees with respect to changes in the underlying fund value. We provide algorithms for implementing the integral expressions for the price, the corresponding early exercise boundary and the delta of the surrender option. We quantify and assess the sensitivity of the prices, early exercise boundaries and deltas to changes in the underlying variables including an analysis of the fair insurance fees.
Quantitative Finance | 2018
Nikolay Gudkov; Katja Ignatieva; Jonathan Ziveyi
This paper values guaranteed minimum withdrawal benefit (GMWB) riders embedded in variable annuities assuming that the underlying fund dynamics evolve under the influence of stochastic interest rates, stochastic volatility, stochastic mortality and equity risk. The valuation problem is formulated as a partial differential equation (PDE) which is solved numerically by employing the operator splitting method. Sensitivity analysis of the fair guarantee fee is performed with respect to various model parameters. We find that (i) the fair insurance fee charged by the product provider is an increasing function of the withdrawal rate; (ii) the GMWB price is higher when stochastic interest rates and volatility are incorporated in the model, compared to the case of static interest rates and volatility; (iii) the GMWB price behaves non-monotonically with changing volatility of variance parameter; (iv) the fair fee increases with increasing volatility of interest rates parameter, and increasing correlation between the underlying fund and the interest rates; (v) the fair fee increases when the speed of mean-reversion of stochastic volatility or the average long-term volatility increases; (vi) the GMWB fee decreases when the speed of mean-reversion of stochastic interest rates or the average long-term interest rates increase. We investigate both static and dynamic (optimal) policyholders withdrawal behaviours; we present the optimal withdrawal schedule as a function of the withdrawal account and the investment account for varying volatility and interest rates. When incorporating stochastic mortality, we find that its impact on the fair guarantee fee is rather small. Our results demonstrate the importance of correct quantification of risks embedded in GMWBs and provide guidance to product providers on optimal hedging of various risks associated with the contract.
Archive | 2015
Yajing Xu; Michael Sherris; Jonathan Ziveyi
Cohort effects have been identified in many countries. However, some mortality models only consider the modelling and projection of age-period effects. Others, that incorporate cohort effects, do not consider cohort specific survival curves that are important for pricing and hedging purposes. In this paper, we consider modelling mortality development on a cohort basis, propose and assess a multi-cohort mortality model in an affine framework. We model the mortality intensity with common factors that affect all the cohorts as well as cohort specific factors that only affect specific cohorts, so that the correlations among cohorts are not perfect.In particular, we consider a three-factor case. The three-factor multi-cohort model is established using Danish male mortality data. The two common factors are extracted using a Kalman Filter algorithm and cohort specific factors are estimated by minimizing the residual calibration error. The calibration results demonstrate the need for cohort effects. The out-of-sample forecast performance of the proposed model, the RH model (age-period-cohort model developed of Renshaw and Haberman (2006)) and the CBD model (age-period model developed of Cairns et al. (2006)) are compared to actual mortality data. The results show that the proposed model produces more consistent estimates of cohort survival curves.
Archive | 2011
Carl Chiarella; Jonathan Ziveyi
A numerical technique for the evaluation of American spread call options where the underlying asset dynamics evolve under the influence of a single stochastic variance process of the Heston (1993) type is presented. The numerical algorithm involves extending to the multi-dimensional setting the method of lines approach first presented in the option pricing framework by Meyer and van der Hoek (1997) when pricing the standard American put option. We transform the pricing partial differential equation to a corresponding system of ordinary differential equations with the aid of the Riccati transformation. We use the implicit trapezoidal rule to solve the resulting Riccati equations. Numerical results are presented outlining the effectiveness of the algorithm. The effects of stochastic volatility are explored by making comparisons with the geometric Brownian motion results.