Jonathas S. Bittencourt
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonathas S. Bittencourt.
Biological Reviews | 2010
Max C. Langer; Martín D. Ezcurra; Jonathas S. Bittencourt; Fernando E. Novas
The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister‐group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid‐Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node‐based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as “all descendants of the most recent common ancestor of birds and Triceratops”. Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical “competitive” models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian‐Norian, Triassic‐Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as “prosauropods” and coelophysoids.
Anais Da Academia Brasileira De Ciencias | 2011
Jonathas S. Bittencourt; Max C. Langer
The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.
Naturwissenschaften | 2011
Sergio Furtado Cabreira; Cesar L. Schultz; Jonathas S. Bittencourt; Marina Bento Soares; Daniel Costa Fortier; Lúcio Roberto Da Silva; Max C. Langer
Post-Triassic theropod, sauropodomorph, and ornithischian dinosaurs are readily recognized based on the set of traits that typically characterize each of these groups. On the contrary, most of the early members of those lineages lack such specializations, but share a range of generalized traits also seen in more basal dinosauromorphs. Here, we report on a new Late Triassic dinosaur from the Santa Maria Formation of Rio Grande do Sul, southern Brazil. The specimen comprises the disarticulated partial skeleton of a single individual, including most of the skull bones. Based on four phylogenetic analyses, the new dinosaur fits consistently on the sauropodomorph stem, but lacks several typical features of sauropodomorphs, showing dinosaur plesiomorphies together with some neotheropod traits. This is not an exception among basal dinosaurs, the early radiation of which is characterized by a mosaic pattern of character acquisition, resulting in the uncertain phylogenetic placement of various early members of the group.
Geological Society, London, Special Publications | 2013
Max C. Langer; Sterling J. Nesbitt; Jonathas S. Bittencourt; Randall B. Irmis
Abstract Ichnological evidence suggests that dinosauromorphs originated by the Early Triassic, and skeletal remains of non-dinosaur representatives of the clade occur from the Anisian to the end of the Triassic. These taxa are small- to medium-sized, vary in feeding and locomotor features, and occurred over most of western Pangaea. They include the small lagerpetids from the Mid–Late Triassic of Argentina and the United States, and the larger, quadrupedal Silesauridae, with records in the Middle Triassic of Africa and Argentina, and in the Late Triassic of Europe, the Americas and northern Africa. The former group represents the earliest diverging dinosauromorphs, whereas silesaurids are more closely related to Dinosauria. Other dinosauromorphs include the archetypal early dinosauriform Marasuchus lilloensis (Middle Triassic of Argentina) and poorly known/controversial taxa such as Lewisuchus admixtus and Saltopus elginensis. The earliest diverging dinosauromorphs may have preyed on small animals (including insects), but cranio-dental remains are rare; by contrast, most silesaurids probably included plant material in their diet, as indicated by their modified jaw apparatus and teeth. Our knowledge of the anatomy and thus relationships of non-dinosaurian Dinosauromorpha is still deficient, and we suspect that future discoveries will continue to reveal novel patterns and hypotheses of palaeobiology and biogeography.
Journal of Systematic Palaeontology | 2015
Jonathas S. Bittencourt; Andrea B. Arcucci; Claudia A. Marsicano; Max C. Langer
Lewisuchus admixtus is an enigmatic early dinosauriform from the Chañares Formation, Ladinian of Argentina, which has been recently considered a member of Silesauridae. Yet, it differs markedly from Late Triassic silesaurids in dental and vertebral anatomy. Indeed, a detailed redescription of its holotype allowed the identification of several features of the skeleton previously unrecognized amongst silesaurids. These include pterygoid teeth, a dorsomedial posttemporal opening on the otoccipital, foramina associated with cranial nerves X–XII on the caudal region of the prootic–otoccipital, and postaxial neck/trunk vertebrae with craniocaudally expanded neural spines. The presence of a single row of presacral scutes was also confirmed. Some elements previously referred to, or found associated with, the holotype, including a lower jaw, pedal elements and an astragalus, more probably correspond to proterochampsid remains. The anatomical information available for the holotype of L. admixtus was rescored into a new phylogenetic dataset for dinosauromorphs, mostly based on previous works. Lewisuchus admixtus and Pseudolagosuchus major are treated as distinct OTUs because their preserved skeletons mostly lack overlapping parts. The parsimony analysis supports the basal position of L. admixtus within dinosauriforms, prior to the silesaurid–dinosaur split, rather than at the base of Silesauridae. This suggests that a higher number of early dinosauriform clades branched in the Middle and Late Triassic than previously suggested.
Earth and Environmental Science Transactions of The Royal Society of Edinburgh | 2010
Max C. Langer; Jonathas S. Bittencourt; Cesar L. Schultz
The dinosaur record of the Santa Maria beds of Rio Grande do Sul (Mid–Late Triassic; south Brazil) includes the herrerasaur Staurikosaurus pricei , and two basal members of the sauropodomorph lineage: Saturnalia tupiniquim and Unaysaurus tolentinoi . The most enigmatic of the saurischian taxa is, however, Guaibasaurus candelariensis , previously regarded as either a basal theropod or a basal sauropodomorph. This study provides a detailed anatomical revision of all specimens originally referred to G. candelariensis by Bonaparte and co-authors, including its type-series and a more recently excavated partial postcranium. Although coming from different sites, these specimens share a unique combination of traits, and at least one possible autapomorphic feature of the pelvis, which support the inclusivity and uniqueness of the species. G. candelariensis was a medium-sized (nearly 2 m long) biped with an intriguing mix of plesiomorphic and derived (eusaurischian/theropod) features. Phylogenetic studies reveal weak support for the nesting of G. candelariensis within Theropoda, but this affinity is bolstered by various traits it shares with neotheropods. The Norian age of G. candelariensis corroborates previous studies that suggest the continuous radiation of more basal dinosauromorphs until the end of the Triassic, after the appearance of the three main dinosaur clades.
Journal of Vertebrate Paleontology | 2013
Felipe C. Montefeltro; Jonathas S. Bittencourt; Max C. Langer; Cesar L. Schultz
ABSTRACT Teyumbaita sulcognathus is a peculiar endemic Brazilian rhynchosaur that remained somewhat obscure until recently, when its skull anatomy was described and a new generic name was assigned to this highly autapomorphic taxon. Here, the postcranial skeleton of Teyumbaita sulcognathus is for the first time fully described based on the holotype and the two more complete referred specimens. Rhynchosaur postcranial anatomy has usually been considered to be rather conservative, but T. sulcognathus shows unforeseen morphological variation. Autapomorphic traits were added to the diagnosis of T. sulcognathus and intraspecific variation was also identified. In addition, six new phylogeneticaly informative postcranial characters were recognized. Some of these represent apomorphies of clades such as Rhynchosauridae (axis with ventral keel, crest on the anteromedial surface of tibial shaft) and Hyperodapedontinae (postaxial cervical vertebrae with ventral keel, supinator process composed of a low supinator ridge and the ligament groove), revealing new support for their monophyly. The rhynchosaur diversity of the Otter Sandstone Formation (England) was also evaluated based on a phylogenetic analysis. The results suggest that the postcranium EXEMS 79/1992 is more likely related to Fodonyx spenceri than to Bentonyx sidensis.
Historical Biology | 2013
Jonathas S. Bittencourt; Átila Augusto Stock da Rosa; Cesar L. Schultz; Max C. Langer
Vertebrate fossils recovered from sites nearby the Botucaraí Hill and Candelária (Caturrita Formation) depict a diverse Late Triassic tetrapod fauna from south Brazil. These records are of key importance to the biostratigraphy of the upper sections of the Rosario do Sul Group. A lithological and biostratigraphic survey on the main fossil localities of the Botucaraí Hill area confirms the occurrence of the lower Hyperodapedon and the upper Riograndia Assemblage Zones in the region, the latter yielding early saurischians. In this paper, three incomplete dinosaur specimens, an isolated sacral vertebra, an articulated left pubis–ischium and an isolated right ischium, from the ‘Botucaraí Hill’ site are described. A comparative survey suggests that these specimens have sauropodomorph affinities, but probably more primitive than typical ‘prosauropods’ from the Norian-Early Jurassic. Regardless of the phylogenetic position of Guaibasaurus as theropod or sauropodomorph, their occurrence in the Caturrita Formation, which also yielded ‘core prosauropods’ from the Santa Maria region, suggests either the survival of early members of the clade with more derived ‘prosauropods’ or that heterochronous faunas are sampled from that stratigraphic unit.
Alcheringa | 2012
Jonathas S. Bittencourt; Luciano A. Leal; Max C. Langer; Sérgio A. K. Azevedo
Bittencourt, J.S., Leal, L.A., Langer, M.C. & Azevedo, S.A.K., June 2012. An additional basal sauropodomorph specimen from theUpperTriassic Caturrita Formation, southern Brazil, with comments on the biogeography of plateosaurids. Alcheringa, 1–10. ISSN0311-5518. We describe an additional saurischian specimen from the Caturrita Formation (Norian) of the Parana Basin, southern Brazil. This material was collected in the 1950s and remained unstudied due to its fragmentary condition. Detailed comparisons with other saurischians worldwide reveal that some characters of the ilium, including the low ventral projection of the medial wall of the acetabulum and its concave ventral margin, together with the short triangular shape of the pre-acetabular process and its mound-like dorsocaudal edge, resemble those of sauropodomorphs such as Plateosaurus and Riojasaurus. This set of traits suggests that MN 1326-V has affinities with basal Sauropodomorpha, probably closer to plateosaurians than to Saturnalia-like taxa. Previous records of this clade in the Caturrita Formation include Unaysaurus, which has been related to Plateosaurus within Plateosauridae. Alternative schemes suggest that plateosaurids include Plateosaurus plus the Argentinean ‘prosauropods’ Coloradisaurus and Riojasaurus. Both hypotheses raise biogeographic questions, as a close relationship between faunas from South America and Europe excluding Africa and North America is not supported by geological and biostratigraphical evidence. Additionally, the absence of plateosaurids in other continents suggests that the geographical distribution of thistaxon is inconsistent with the geological history of western Pangaea, and this demands further investigations of the phylogeny of sauropodomorphs or improved sampling. J.S. Bittencourt* [[email protected]] Laboratório de Paleontologia, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 1404901, Ribeirão Preto, SP, Brazil. Fellow FAPESP; L.A. Leal, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Rua José Moreira Sobrinho, s/n, 45206-190, Jequié, BA, Brazil; M.C. Langer, Laboratório de Paleontologia, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 1404901, Ribeirão Preto, SP, Brazil; S.A.K. Azevedo, Laboratório de Processamento de Imagem Digital, Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, 20940-040, Rio de Janeiro, RJ, Brazil. Received 29.7.2011; revised 10.10.2011; accepted 18.10.2011.
Scientific Reports | 2017
Mario Bronzati; Oliver W. M. Rauhut; Jonathas S. Bittencourt; Max C. Langer
The evolutionary history of dinosaurs might date back to the first stages of the Triassic (c. 250–240 Ma), but the oldest unequivocal records of the group come from Late Triassic (Carnian – c. 230 Ma) rocks of South America. Here, we present the first braincase endocast of a Carnian dinosaur, the sauropodomorph Saturnalia tupiniquim, and provide new data regarding the evolution of the floccular and parafloccular lobe of the cerebellum (FFL), which has been extensively discussed in the field of palaeoneurology. Previous studies proposed that the development of a permanent quadrupedal stance was one of the factors leading to the volume reduction of the FFL of sauropods. However, based on the new data for S. tupiniquim we identified a first moment of FFL volume reduction in non-sauropodan Sauropodomorpha, preceding the acquisition of a fully quadrupedal stance. Analysing variations in FFL volume alongside other morphological changes in the group, we suggest that this reduction is potentially related to the adoption of a more restricted herbivore diet. In this context, the FFL of sauropods might represent a vestigial trait, retained in a reduced version from the bipedal and predatory early sauropodomorphs.
Collaboration
Dive into the Jonathas S. Bittencourt's collaboration.
Francisco Sekiguchi de Carvalho e Buchmann
Universidade Federal do Rio Grande do Sul
View shared research outputs