Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathon M. Sullivan is active.

Publication


Featured researches published by Jonathon M. Sullivan.


Journal of the Neurological Sciences | 2000

Brain ischemia and reperfusion: molecular mechanisms of neuronal injury.

Blaine C. White; Jonathon M. Sullivan; Donald J. DeGracia; Brian J. O'Neil; Robert W. Neumar; Lawrence I. Grossman; José A. Rafols; Gary S. Krause

Brain ischemia and reperfusion engage multiple independently-fatal terminal pathways involving loss of membrane integrity in partitioning ions, progressive proteolysis, and inability to check these processes because of loss of general translation competence and reduced survival signal-transduction. Ischemia results in rapid loss of high-energy phosphate compounds and generalized depolarization, which induces release of glutamate and, in selectively vulnerable neurons (SVNs), opening of both voltage-dependent and glutamate-regulated calcium channels. This allows a large increase in cytosolic Ca(2+) associated with activation of mu-calpain, calcineurin, and phospholipases with consequent proteolysis of calpain substrates (including spectrin and eIF4G), activation of NOS and potentially of Bad, and accumulation of free arachidonic acid, which can induce depletion of Ca(2+) from the ER lumen. A kinase that shuts off translation initiation by phosphorylating the alpha-subunit of eukaryotic initiation factor-2 (eIF2alpha) is activated either by adenosine degradation products or depletion of ER lumenal Ca(2+). Early during reperfusion, oxidative metabolism of arachidonate causes a burst of excess oxygen radicals, iron is released from storage proteins by superoxide-mediated reduction, and NO is generated. These events result in peroxynitrite generation, inappropriate protein nitrosylation, and lipid peroxidation, which ultrastructurally appears to principally damage the plasmalemma of SVNs. The initial recovery of ATP supports very rapid eIF2alpha phosphorylation that in SVNs is prolonged and associated with a major reduction in protein synthesis. High catecholamine levels induced by the ischemic episode itself and/or drug administration down-regulate insulin secretion and induce inhibition of growth-factor receptor tyrosine kinase activity, effects associated with down-regulation of survival signal-transduction through the Ras pathway. Caspase activation occurs during the early hours of reperfusion following mitochondrial release of caspase 9 and cytochrome c. The SVNs find themselves with substantial membrane damage, calpain-mediated proteolytic degradation of eIF4G and cytoskeletal proteins, altered translation initiation mechanisms that substantially reduce total protein synthesis and impose major alterations in message selection, down-regulated survival signal-transduction, and caspase activation. This picture argues powerfully that, for therapy of brain ischemia and reperfusion, the concept of single drug intervention (which has characterized the approaches of basic research, the pharmaceutical industry, and clinical trials) cannot be effective. Although rigorous study of multi-drug protocols is very demanding, effective therapy is likely to require (1) peptide growth factors for early activation of survival-signaling pathways and recovery of translation competence, (2) inhibition of lipid peroxidation, (3) inhibition of calpain, and (4) caspase inhibition. Examination of such protocols will require not only characterization of functional and histopathologic outcome, but also study of biochemical markers of the injury processes to establish the role of each drug.


Journal of Cerebral Blood Flow and Metabolism | 1997

Effect of Brain Ischemia and Reperfusion on the Localization of Phosphorylated Eukaryotic Initiation Factor 2α

Donald J. DeGracia; Jonathon M. Sullivan; Robert W. Neumar; Sarah S. Alousi; Katie R. Hikade; Joel E. Pittman; Blaine C. White; José A. Rafols; Gary S. Krause

Postischemic brain reperfusion is associated with a substantial and long-lasting reduction of protein synthesis in selectively vulnerable neurons. Because the overall translation initiation rate is typically regulated by altering the phosphorylation of serine 51 on the α-subunit of eukaryotic initiation factor 2 (eIF-2α), we used an antibody specific to phosphorylated eIF-2α [eIF-2(αP)] to study the regional and cellular distribution of eIF-2(αP) in normal, ischemic, and reperfused rat brains. Western blots of brain postmitochondrial supernatants revealed that ~1% of all eIF-2α is phosphorylated in controls, eIF-2(αP) is not reduced by up to 30 minutes of ischemia, and eIF-2(αP) is increased ~20-fold after 10 and 90 minutes of reperfusion. Immunohistochemistry shows localization of eIF-2(αP) to astrocytes in normal brains, a massive increase in eIF-2(αP) in the cytoplasm of neurons within the first 10 minutes of reperfusion, accumulation of eIF-2(αP) in the nuclei of selectively vulnerable neurons after 1 hour of reperfusion, and morphology suggesting pyknosis or apoptosis in neuronal nuclei that continue to display eIF-2(αP) after 4 hours of reperfusion. These observations, together with the fact that eIF-2(αP) inhibits translation initiation, make a compelling case that eIF-2(αP) is responsible for reperfusion-induced inhibition of protein synthesis in vulnerable neurons.


Experimental Neurology | 1999

Eukaryotic Initiation Factor 2α Kinase and Phosphatase Activity during Postischemic Brain Reperfusion

Donald J. DeGracia; Steven Adamczyk; Adam J. Folbe; Lynette L. Konkoly; Joel E. Pittman; Robert W. Neumar; Jonathon M. Sullivan; Donalyn Scheuner; Randal J. Kaufman; Blaine C. White; Gary S. Krause

When ischemic brain is reperfused, there is in vulnerable neurons immediate inhibition of protein synthesis associated with a large increase in phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 [eIF2alpha, phosphorylated form eIF2alpha(P)]. We examined eIF2alpha kinase and eIF2alpha(P) phosphatase activity in brain homogenate postmitochondrial supernatants obtained from rats after 3 to 30 min of global brain ischemia (cardiac arrest), after 5 min of ischemia and 5 min of reperfusion (5R), and after 10 min of ischemia and 90 min reperfusion (90R). Because it has been suggested that PKR might be specifically responsible for producing eIF2alpha(P) during reperfusion, we also examined in brain homogenates from wild-type and PKR0/0 C57BL/6J x 129/SV mice the effect of 5 min of ischemia and 5 min of reperfusion on eIF2alpha(P). Cytosolic brain eIF2alpha(P) in the 5R and 90R rats was 18- and 23-fold that of nonischemic controls without any change in the rate of eIF2alpha(P) dephosphorylation. There was no change in eIF2alpha kinase activity between 3 and 30 min of ischemia but an 85% decrease in the 5R group; the 90R group was similar to controls. In wild-type and PKR0/0 mice total eIF2alpha was identical, and there was an identical 16-fold increase in eIF2alpha(P) at 5 min of reperfusion. Our observations contradict hypotheses that PKR activation, loss of eIF2alpha(P) phosphatase activity, or any general increase in eIF2alpha kinase activity are responsible for reperfusion-induced phosphorylation of eIF2alpha, and we suggest that the mechanism may involve regulation of the availability of eIF2alpha to a kinase.


Stroke | 2012

Neuroprotective Effect of Acute Ethanol Administration in a Rat With Transient Cerebral Ischemia

Fei Wang; Yu Wang; Xiaokun Geng; Karam Asmaro; Changya Peng; Jonathon M. Sullivan; Jamie Y. Ding; Xunming Ji; Yuchuan Ding

Background and Purpose— Ethanol consumption is inversely associated with the risk of ischemic stroke, suggesting a neuroprotective effect. In a rat model of transient cerebral ischemia, we identified ethanol as a possible treatment for acute ischemic stroke. Methods— Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2 hours. Five sets of experiments were conducted: to determine the dose–response effect of ethanol on brain infarction and functional outcome; to determine whether combining ethanol and hypothermia produces synergistic neuroprotection; to determine the therapeutic windows of opportunity for ethanol in stroke; to test whether ethanol promotes intracerebral hemorrhage in a hemorrhagic or ischemic stroke or after administration of thrombolytics; and to test the affect of ethanol on hypoxia-inducible factor-1&agr; protein expression. Results— Ethanol at 1.5 g/kg reduced infarct volume and behavioral dysfunction when administered at 2, 3, or 4 hours after middle cerebral artery occlusion. The protective effect of ethanol was not improved when paired with hypothermia. Ethanol did not promote cerebral hemorrhage in hemorrhagic or ischemic stroke in combination with recombinant tissue-type plasminogen activator or urokinase. Ethanol treatment (1.5 g/kg) increased protein levels of hypoxia-inducible factor-1&agr; at 3 hours postreperfusion. Conclusions— Ethanol exerts a strong neuroprotective effect when administered up to 4 hours after ischemia, increases expression of hypoxia-inducible factor-1&agr;, and does not promote intracerebral hemorrhage when used with thrombolytics. Ethanol is a potential neuroprotectant for acute ischemic stroke.


Journal of Cerebral Blood Flow and Metabolism | 1999

Insulin Induces Dephosphorylation of Eukaryotic Initiation Factor 2α and Restores Protein Synthesis in Vulnerable Hippocampal Neurons after Transient Brain Ischemia

Jonathon M. Sullivan; Sarah S. Alousi; Katie R. Hikade; Nabil J. Bahu; José A. Rafols; Gary S. Krause; Blaine C. White

Brain reperfusion causes prompt, severe, and prolonged protein synthesis suppression and increased phosphorylation of eukaryotic initiation factor 2α [eIF2α(P)] in hippocampal CA1 and hilar neurons, The authors hypothesized that eIF2α(P) dephosphorylation would lead to recovery of protein synthesis. Here the effects of insulin, which activates phosphatases, were examined by immunostaining for eIF2α(P) and autoradiography of in vivo 35S amino acid incorporation. Rats resuscitated from a 10-minute cardiac arrest were given 0, 2, 10 or 20U/kg of intravenous insulin, underwent reperfusion for 90 minutes, and were perfusion fixed. Thirty minutes before perfusion fixation, control and resuscitated animals received 500 μCi/kg of 35S methionine/cysteine. Alternate 30-μm brain sections were autoradiographed or immunostained for eIF2α(P). Controls had abundant protein synthesis and no eIF2α(P) in hippocampal neurons. Untreated reperfused neurons in the CA1, hilus, and dentate gyrus had intense staining for eIF2α(P) and reduced protein synthesis; there was little improvement with treatment with 2 or 10 U/kg of insulin. However, with 20 U/kg of insulin, these neurons recovered protein synthesis and were free of eIF2α(P). These results show that the suppression of protein synthesis in the reperfused brain is reversible; they support a causal association between eIF2α(P) and inhibition of protein synthesis, and suggest a mechanism for the neuroprotective effects of insulin.


Neurological Research | 2009

Insulin activates the PI3K-Akt survival pathway in vulnerable neurons following global brain ischemia.

Thomas H. Sanderson; Rita Kumar; Alina C. Murariu-Dobrin; Andrea B. Page; Gary S. Krause; Jonathon M. Sullivan

Abstract Insulin is neuroprotective following transient global brain ischemia; however, the mechanisms by which insulin exerts its salutary effects remain unclear. Objective: We assessed insulins effect on the PI3K-Akt survival system and consequent modulation of the pro-apoptotic proteins Bim, Bad and FoxO3a. Methods: We utilized rats subjected to 10 minutes of global brain ischemia, with or without insulin administered at the onset of reperfusion. Results: In sham-operated animals, minimal pAkt immunofluorescence was detected in the CA1. Moreover, at 30 minute reperfusion, there was no change in pAkt in CA1 neurons. Single bolus high-dose insulin treatment resulted in an early increase in pAkt after 30 minutes, preservation of CA1 neurons to 14 days of reperfusion and preservation of spatial learning ability. Insulin treatment increased cytoplasmic and nuclear staining for pAkt in both CA1 and cortex. Insulin-induced Akt phosphorylation was suppressed by the PI3K inhibitor wortmannin. Neither reperfusion nor insulin induced any change in the phosphorylation or subcellular localization of FoxO3a, Bim or Bad. A single bolus of high-dose insulin reduced CA1 neuronal cell death and thus represents a potential therapeutic intervention for global brain ischemia. Discussion: These results reveal that proximal elements of a known cell-survival pathway are triggered by high-dose insulin during early reperfusion. Insulin induces robust PI3K-dependent phosphorylation of Akt by 30 minute reperfusion and results in improvement of hippocampal structure and function. However, the Akt substrates FoxO3a, Bim and Bad do not undergo corresponding changes in phosphorylation or subcellular localization in this model of global brain ischemia. The downstream components of insulin-induced Akt survival signaling after transient global brain ischemia remain to be identified.


Journal of Neurochemistry | 2008

Insulin blocks cytochrome c release in the reperfused brain through PI3-K signaling and by promoting Bax/Bcl-XL binding

Thomas H. Sanderson; Rita Kumar; Jonathon M. Sullivan; Gary S. Krause

The critical event of the intrinsic pathway of apoptosis following transient global brain ischemia is the release of cytochrome c from the mitochondria. In vitro studies have shown that insulin can signal specifically via phosphatidylinositol‐3‐OH‐kinase (PI3‐K) and Akt to prevent cytochrome c release. Therefore, insulin may exert its neuroprotective effects during brain reperfusion by blocking cytochrome c release. We hypothesized that insulin acts through PI3‐K, Akt, and Bcl‐2 family proteins to inhibit cytochrome c release following transient global brain ischemia. We found that a single bolus of insulin given immediately upon reperfusion inhibited cytochrome c release for at least 24 h, and produced a fivefold improvement in neuronal survival at 14 days. Moreover, insulin’s ability to inhibit cytochrome c release was completely dependent on PI3‐K signaling and insulin induces phosphorylation of Akt through PI3‐K. In untreated animals, there was an increase in mitochondrial Bax at 6 h of reperfusion, and Bax binding to Bcl‐XL was disrupted at the mitochondria. Insulin prevented both these events in a PI3‐K‐dependent manner. In summary, insulin regulates cytochrome c release through PI3‐K likely by activating Akt, promoting the binding between Bax and Bcl‐XL, and by preventing Bax translocation to the mitochondria.


Neuroscience Research | 2013

Acute administration of ethanol reduces apoptosis following ischemic stroke in rats

Paul Fu; Changya Peng; Jamie Y. Ding; Karam Asmaro; Jonathon M. Sullivan; Murali Guthikonda; Yuchuan Ding

In recent studies, acute ethanol administration appears to play a neuroprotective role during ischemic stroke. We sought to confirm these findings by identifying if ethanol-derived neuroprotection is associated with a reduction in apoptosis. Ethanol at 0.5 and 1.5 g/kg doses was given by intraperitoneal injections to Sprague-Dawley rats after 2h of middle cerebral artery (MCA) occlusion, followed by reperfusion. We quantified apoptotic cell death in each of the treatment groups with ELISA, and measured pro- and anti-apoptotic protein expression with Western blot analysis. Cell death was significantly increased in rats after ischemia and was subsequently significantly reduced by the administration of 1.5 g/kg of ethanol. We found that the 1.5 g/kg dose promoted the expression of pro-survival factors and decreased the expression of apoptotic proteins at 3h after reperfusion. This effect was maintained at 24h for Caspase-3 and apoptosis-inducing factor (AIF), although not for Bcl-2, Bcl-xL, and Bcl-2-associated X (Bax). Administration of 0.5 g/kg of ethanol was not as effective in regulating protein expression as the 1.5 g/kg dose. Our study suggests that administration of ethanol at a dose of 1.5 g/kg after stroke - which provides rat blood alcohol levels equivalent to the legal driving limit - produces a differential protein profile, with increased expression of anti-apoptotic proteins and decrease in pro-apoptotic factors. This results in a significant reduction of neuronal apoptosis and is neuroprotective in ischemia-reperfusion injury.


Academic Emergency Medicine | 2013

Combination Therapy With Insulin-like Growth Factor-1 and Hypothermia Synergistically Improves Outcome After Transient Global Brain Ischemia in the Rat

Anthony T. Lagina; Lesley Calo; Michael Deogracias; Thomas H. Sanderson; Rita Kumar; Joe Wider; Jonathon M. Sullivan

OBJECTIVES Hypothermia has a well-established neuroprotective effect and offers a foundation for combination therapy for brain ischemia. The authors evaluated the effect of combination therapy with insulin-like growth factor-1 (IGF-1) and hypothermia on brain structure and function in the setting of global brain ischemia and reperfusion in rats. METHODS Male Sprague-Dawley rats were randomly assigned to groups by a registrar. Animals were subjected to 8 minutes of global brain ischemia using bilateral carotid occlusion and systemic hypotension, followed by 7 days (Stage I dose studies) or 28 days (Stage II outcome studies) of reperfusion. Sham controls were subjected to surgery, but not ischemia. Stage II animals were randomized to no treatment, IGF-1 at the dose determined in Stage I, hypothermia (32°C for 4 hours), or a combination of IGF-1 and hypothermia. Stage II animals underwent 21 days of spatial memory testing. At 7 days (Stage I) or 28 days (Stage II), brains were harvested for counting of CA1 neurons. The primary Stage II outcome was a neurologic outcome index computed as the ratio of viable CA1 neurons per 300-μm field to the number of days to reach success criteria on the memory task. RESULTS Stage I experiments confirmed the neuroprotective effect of the hypothermia protocol and IGF-1 at a dose of 0.6 U/kg. Stage II studies suggested that early neuroprotection with hypothermia and IGF-1 was not well maintained to 28 days and that combination therapy was more beneficial than either IGF-1 or hypothermia alone. Median and interquartile ranges (IQRs) of viable neurons per 300-μm field were 114 (IQR = 99.5 to 136) for sham, three (IQR = 2 to 4.8) for untreated ischemia, four (IQR = 3 to 70.25) for ischemia treated with IGF-1 alone, 25 (IQR = 3 to 70) for ischemia treated with hypothermia alone, and 78 (IQR 47.3 to 97.5) for ischemia treated with combination therapy. Days to memory success criteria were 13.6 (IQR = 11.5 to 15.5 days) for sham, 23.5 (IQR = 20 to 25.5 days) for untreated ischemia, 17.5 (IQR = 15.5 to 25.5 days) for ischemia treated with IGF-1, 15 (IQR = 14.5 to 21 days) for ischemia treated with hypothermia, and 13.5 (IQR = 12.25 to 18.5 days) for ischemia treated with combination therapy. Neurologic outcome indices were 8.5 (IQR = 7.4 to 9.5) for sham, 0.14 (IQR = 0.08 to 0.2) for untreated ischemia, 0.18 (IQR = 0.17 to 4.6) for ischemia treated with IGF-1, 0.7 (IQR = 0.2 to 4.8) for ischemia treated with hypothermia, and 5.7 (IQR = 3.3 to 6.2) for ischemia treated with combination therapy. Statistically significant differences in neuron counts, days to memory test criteria, and outcome index were found between sham and untreated ischemic animals. Of the three treatment regimens, only combination therapy showed a statistically significant difference from the untreated ischemic group for neuronal salvage (p = 0.02), days to criteria (p = 0.043), and outcome index (p = 0.014). CONCLUSIONS Combination therapy with IGF-1 (0.6 U/kg) and therapeutic hypothermia (32°C for 4 hours) at the onset of reperfusion synergistically preserves CA1 structure and function at 28 days after 8 minutes of global brain ischemia in healthy male rats.


Academic Emergency Medicine | 2012

The “Refrige‐a‐RAT‐or”: An Accurate, Inexpensive, and Clinically Relevant Small Animal Model of Therapeutic Hypothermia

Anthony T. Lagina; Michael Deogracias; Karin Reed; Danielle Bazzi; Rasika Chepuri; Lesley Foster; Jonathon M. Sullivan

BACKGROUND Physical and molecular mechanisms for the neuroprotective effect of therapeutic hypothermia are not completely understood, and new therapeutic applications incorporating hypothermia remain to be developed and tested. Clinically relevant animal models of therapeutic hypothermia are not well established or consistent. OBJECTIVES The objective was to develop and test an inexpensive small animal therapeutic hypothermia system that models those in widespread clinical use and verify that such a system confers neuroprotection in a rat model of global brain ischemia. METHODS A water-cooled extracorporeal system and attendant anesthesia/sedation protocol were developed and tested. In Stage 1, animals were instrumented for brain, temporalis, and rectal temperature monitoring, and the system was tested for its effect on temperature and hemodynamics. In Stage 2, animals were instrumented for rectal temperature only, subjected to global brain ischemia by two-vessel occlusion and hypotension for 8 minutes, and given either sham therapy (37°C) or hypothermia (32°C) for 4 hours. Viable CA1 neurons were counted at 7 days. RESULTS The system was well tolerated, provided exquisite control of animal core and brain temperatures, and conferred robust neuroprotection at 7 days. The median and interquartile ranges (IQRs) of viable neurons per 300-μm field were 130 (IQR = 128 to 135) for sham control, 19 (IQR = 15 to 30) for untreated ischemic animals, and 101 (IQR = 94 to 113) for ischemic animals treated with hypothermia (p < 0.05 for comparison between all groups). CONCLUSIONS Like human protocols, this model incorporates sedation and analgesia, results in robust neuroprotection, is well tolerated, and offers exquisite temperature control. The system is noninvasive and inexpensive and offers a model that is similar to methods used in clinical practice. This system will be of interest to investigators using small animal models to examine neuroprotective mechanisms of hypothermia and translational strategies that combine hypothermia with targeted pharmacotherapy.

Collaboration


Dive into the Jonathon M. Sullivan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Kumar

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge