Jonel P. Saludes
Washington State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jonel P. Saludes.
ACS Chemical Biology | 2013
Leslie A. Morton; Hengwen Yang; Jonel P. Saludes; Zeno Fiorini; Lida A. Beninson; Edwin R. Chapman; Monika Fleshner; Ding Xue; Hang Yin
Membrane curvature and lipid composition regulates important biological processes within a cell. Currently, several proteins have been reported to sense and/or induce membrane curvatures, e.g., Synaptotagmin-1 and Amphiphysin. However, the large protein scaffold of these curvature sensors limits their applications in complex biological systems. Our interest focuses on identifying and designing peptides that can sense membrane curvature based on established elements observed in natural curvature-sensing proteins. Membrane curvature remodeling also depends on their lipid composition, suggesting strategies to specifically target membrane shape and lipid components simultaneously. We have successfully identified a 25-mer peptide, MARCKS-ED, based on the effector domain sequence of the intracellular membrane protein myristoylated alanine-rich C-kinase substrate that can recognize PS with preferences for highly curved vesicles in a sequence-specific manner. These studies further contribute to the understanding of how proteins and peptides sense membrane curvature, as well as provide potential probes for membrane shape and lipid composition.
PLOS ONE | 2014
Lida A. Beninson; Peter N. Brown; Alice B. Loughridge; Jonel P. Saludes; Thomas Maslanik; A. Hills; Tyler Woodworth; W. Craig; Hang Yin; Monika Fleshner
Exosomes, biologically active nanoparticles (40–100 nm) released by hematopoietic and non-hematopoietic cells, contain a variety of proteins and small, non-coding RNA known as microRNA (miRNA). Exposure to various pathogens and disease states modifies the composition and function of exosomes, but there are no studies examining in vivo exosomal changes evoked by the acute stress response. The present study reveals that exposing male Fisher 344 rats to an acute stressor modulates the protein and miRNA profile of circulating plasma exosomes, specifically increasing surface heat shock protein 72 (Hsp72) and decreasing miR-142-5p and -203. The selected miRNAs and Hsp72 are associated with immunomodulatory functions and are likely a critical component of stress-evoked modulation of immunity. Further, we demonstrate that some of these stress-induced modifications in plasma exosomes are mediated by sympathetic nervous system (SNS) activation of alpha-1 adrenergic receptors (ADRs), since drug-mediated blockade of the receptors significantly attenuates the stress-induced modifications of exosomal Hsp72 and miR-142-5p. Together, these findings demonstrate that activation of the acute stress response modifies the proteomic and miRNA profile of exosomes released into the circulation.
Journal of the American Chemical Society | 2009
Jonel P. Saludes; James B. Ames; Jacquelyn Gervay-Hague
Surface expression of alpha-(2,8)-linked polymers of sialic acid in adult tissues has been correlated with metastasis of several human cancers. One approach to chemotherapeutic intervention against the spread of these cancers involves the development of immunogenic molecules that elicit an antibody response against alpha-(2,8)-linked polysialic acids. Naturally occurring polysialic acids are not viable candidates because they are present during embryonic development and are recognized as self by the immune system. These natural polymers also have poor pharmacokinetic properties because they are readily degraded by neuraminidase enzymes. We have been interested in developing structural surrogates of polysialic acids in an effort to overcome these limitations. Reported herein are microwave-assisted solid-phase peptide syntheses and structural characterization studies of a series of alpha/delta hybrid peptides derived from Fmoc-Neu2en and Fmoc-Glu(OtBu)-OH. Conformational experiments including circular dichroism, NH/ND exchange, and ROESY in aqueous solution were performed to study the secondary structures of these hybrid foldamers. ROESY data were analyzed with the assistance of XPLOR-NIH that was modified to include parameter and topology files to accommodate unnatural amino acids and the delta amide linkages. The results indicate that stable secondary structure is dependent upon both the amino acid sequence and the configuration of Glu. The most stable foldamer was composed of a total of 6 residues beginning with L-Glu at the carboxy terminus and alternating Neu2en and L-Glu residues. In water, this foldamer adopts a right-handed helical conformation with 3.7 residues per turn, 7.4 A pitch, 5.8 A diameter, and a length of 18.5 A, which is stabilized by both classical C=O...H-N backbone interactions and by pyranose ring O and L-Glu HN H-bonding. These structural features orient the L-Glu carboxylates along the helical backbone with a periodicity that matches the carboxylate positions along the reported G2(+) left-handed helix of alpha-(2,8)-polysialic acid. However, the charge density of the foldamer is one-half that of the natural polymer. These findings provide a fundamental understanding of the factors that influence stable secondary structure in hybrid Neu2en/Glu systems, and the tools we have developed establish a viable platform for the rational design of alpha-(2,8)-polysialic acid surrogates.
Carbohydrate Research | 2008
Evan J. Horn; Jonel P. Saludes; Jacquelyn Gervay-Hague
Sialic acid, an important carbohydrate found incorporated on the cell surface of many organisms, has been modified for use in a wide range of biological and pharmaceutical applications. We hypothesized that 4,7,8,9-tetra-O-acetyl-2-deoxy-2,3-dehydro-N-acetyl neuraminic acid methyl ester (4) could be efficiently synthesized in a one-pot reaction by heating peracetylated sialic acid (2) in pyridine and acetic anhydride to induce beta-elimination. When reduced to practice, this reaction produced only modest yields of 4. Six compounds, including three new decarboxylated sialic acid dimers, were also found to have been synthesized in the reaction. In an effort to better understand the chemistry and the mechanisms of this reaction, all of the side products were isolated and fully characterized.
Journal of Virology | 2015
Qian Liu; Birgit Bradel-Tretheway; Abrrey I. Monreal; Jonel P. Saludes; Xiaonan Lu; Anthony V. Nicola; Hector C. Aguilar
ABSTRACT Membrane fusion is essential for paramyxovirus entry into target cells and for the cell-cell fusion (syncytia) that results from many paramyxoviral infections. The concerted efforts of two membrane-integral viral proteins, the attachment (HN, H, or G) and fusion (F) glycoproteins, mediate membrane fusion. The emergent Nipah virus (NiV) is a highly pathogenic and deadly zoonotic paramyxovirus. We recently reported that upon cell receptor ephrinB2 or ephrinB3 binding, at least two conformational changes occur in the NiV-G head, followed by one in the NiV-G stalk, that subsequently result in F triggering and F execution of membrane fusion. However, the domains and residues in NiV-G that trigger F and the specific events that link receptor binding to F triggering are unknown. In the present study, we identified a NiV-G stalk C-terminal region (amino acids 159 to 163) that is important for multiple G functions, including G tetramerization, conformational integrity, G-F interactions, receptor-induced conformational changes in G, and F triggering. On the basis of these results, we propose that this NiV-G region serves as an important structural and functional linker between the NiV-G head and the rest of the stalk and is critical in propagating the F-triggering signal via specific conformational changes that open a concealed F-triggering domain(s) in the G stalk. These findings broaden our understanding of the mechanism(s) of receptor-induced paramyxovirus F triggering during viral entry and cell-cell fusion. IMPORTANCE The emergent deadly viruses Nipah virus (NiV) and Hendra virus belong to the Henipavirus genus in the Paramyxoviridae family. NiV infections target endothelial cells and neurons and, in humans, result in 40 to 75% mortality rates. The broad tropism of the henipaviruses and the unavailability of therapeutics threaten the health of humans and livestock. Viral entry into host cells is the first step of henipavirus infections, which ultimately cause syncytium formation. After attaching to the host cell receptor, henipaviruses enter the target cell via direct viral-cell membrane fusion mediated by two membrane glycoproteins: the attachment protein (G) and the fusion protein (F). In this study, we identified and characterized a region in the NiV-G stalk C-terminal domain that links receptor binding to fusion triggering via several important glycoprotein functions. These findings advance our understanding of the membrane fusion-triggering mechanism(s) of the henipaviruses and the paramyxoviruses.
Journal of Visualized Experiments | 2012
Leslie A. Morton; Jonel P. Saludes; Hang Yin
Liposomes are artificially prepared vesicles consisting of natural and synthetic phospholipids that are widely used as a cell membrane mimicking platform to study protein-protein and protein-lipid interactions, monitor drug delivery, and encapsulation. Phospholipids naturally create curved lipid bilayers, distinguishing itself from a micelle. Liposomes are traditionally classified by size and number of bilayers, i.e. large unilamellar vesicles (LUVs), small unilamellar vesicles (SUVs) and multilamellar vesicles (MLVs). In particular, the preparation of homogeneous liposomes of various sizes is important for studying membrane curvature that plays a vital role in cell signaling, endo- and exocytosis, membrane fusion, and protein trafficking. Several groups analyze how proteins are used to modulate processes that involve membrane curvature and thus prepare liposomes of diameters <100 - 400 nm to study their behavior on cell functions. Others focus on liposome-drug encapsulation, studying liposomes as vehicles to carry and deliver a drug of interest. Drug encapsulation can be achieved as reported during liposome formation. Our extrusion step should not affect the encapsulated drug for two reasons, i.e. (1) drug encapsulation should be achieved prior to this step and liposomes should retain their natural biophysical stability, securely carrying the drug in the aqueous core. These research goals further suggest the need for an optimized method to design stable sub-micron lipid vesicles. Nonetheless, the current liposome preparation technologies (sonication, freeze-and-thaw, sedimentation) do not allow preparation of liposomes with highly curved surface (i.e. diameter <100 nm) with high consistency and efficiency, which limits the biophysical studies of an emerging field of membrane curvature sensing. Herein, we present a robust preparation method for a variety of biologically relevant liposomes. Manual extrusion using gas-tight syringes and polycarbonate membranes, is a common practice but heterogeneity is often observed when using pore sizes <100 nm due to due to variability of manual pressure applied. We employed a constant pressure-controlled extrusion apparatus to prepare synthetic liposomes whose diameters range between 30 and 400 nm. Dynamic light scattering (DLS), electron microscopy and nanoparticle tracking analysis (NTA) were used to quantify the liposome sizes as described in our protocol, with commercial polystyrene (PS) beads used as a calibration standard. A near linear correlation was observed between the employed pore sizes and the experimentally determined liposomes, indicating high fidelity of our pressure-controlled liposome preparation method. Further, we have shown that this lipid vesicle preparation method is generally applicable, independent of various liposome sizes. Lastly, we have also demonstrated in a time course study that these prepared liposomes were stable for up to 16 hours. A representative nano-sized liposome preparation protocol is demonstrated below.
Chemical Biology & Drug Design | 2010
Jonel P. Saludes; Arutselvan Natarajan; Sally J. DeNardo; Jacquelyn Gervay-Hague
Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half‐life and increase resistance. One modification is the incorporation of non‐α‐amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric α/δ‐peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor‐associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en α/δ‐peptides. DOTA was conjugated at the peptide N‐termini by solid phase peptide synthesis, radiolabeled with 111In, incubated in human blood plasma at 37 °C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half‐life that is two‐ to three‐orders of magnitude higher than natural α‐peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid‐derived peptides that may find pharmaceutical application.
Molecular BioSystems | 2013
Jonel P. Saludes; Leslie A. Morton; Sara K. Coulup; Zeno Fiorini; Brandan M. Cook; Lida A. Beninson; Edwin R. Chapman; Monika Fleshner; Hang Yin
The trimer of a bradykinin derivative displayed a more than five-fold increase in binding affinity for phosphatidylserine-enriched nanovesicles as compared to its monomeric precursor. The nanovesicle selection is directly correlated with multivalency, which amplifies the electrostatic attraction. This strategy may lead to the development of novel molecular probes for detecting highly curved membrane bilayers.
ChemBioChem | 2013
Junglim Lee; Deanne W. Sammond; Zeno Fiorini; Jonel P. Saludes; Michael G. Resch; Bing Hao; Wei Wang; Hang Yin; Xuedong Liu
A structure-based computational approach was used to rationally design peptide inhibitors that can target an E3 ligase (SCF(Fbx4) )-substrate (TRF1) interface and subsequent ubiquitylation. Characterization of the inhibitors demonstrates that our sequence-optimization protocol results in an increase in peptide-TRF1 affinity without compromising peptide-protein specificity.
New Journal of Chemistry | 2014
Jonel P. Saludes; Dhananjaya Sahoo; I. Abrrey Monreal
We developed a simple, rapid and efficient microwave irradiation-assisted protocol that is 1- to 2-orders of magnitude faster than conventional techniques, providing an expedient access to the sialic acid congeners Neu5Ac1Me (1), Neu5Acβ1,2Me2 (2), Neu5Ac1Me O-peracetate (3) and 4,5-oxazoline of Neu5Ac2en1Me O-peracetate (4).