Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jong Hyun Ham is active.

Publication


Featured researches published by Jong Hyun Ham.


Proceedings of the National Academy of Sciences of the United States of America | 2002

HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings

Clemencia M. Rojas; Jong Hyun Ham; Wen-Ling Deng; Jeff J. Doyle; Alan Collmer

Erwinia chrysanthemi is representative of a broad class of bacterial pathogens that are capable of inducing necrosis in plants. The E. chrysanthemi EC16 hecA gene predicts a 3,850-aa member of the Bordetella pertussis filamentous hemagglutinin family of adhesins. A hecA∷Tn7 mutant was reduced in virulence on Nicotiana clevelandii seedlings after inoculation without wounding. Epifluorescence and confocal laser-scanning microscopy observations of hecA and wild-type cells expressing the green fluorescent protein revealed that the mutant is reduced in its ability to attach and then form aggregates on leaves and to cause an aggregate-associated killing of epidermal cells. Cell killing also depended on production of the major pectate lyase isozymes and the type II, but not the type III, secretion pathway in E. chrysanthemi. HecA homologs were found in bacterial pathogens of plants and animals and appear to be unique to pathogens and universal in necrogenic plant pathogens. Phylogenetic comparison of the conserved two-partner secretion domains in the proteins and the 16S rRNA sequences in respective bacteria revealed the two datasets to be fundamentally incongruent, suggesting horizontal acquisition of these genes. Furthermore, hecA and its two homologs in Yersinia pestis had a G+C content that was 10% higher than that of their genomes and similar to that of plant pathogenic Ralstonia, Xylella, and Pseudomonas spp. Our data suggest that filamentous hemagglutinin-like adhesins are broadly important virulence factors in both plant and animal pathogens.


Molecular Plant-microbe Interactions | 2006

WtsE, an AvrE-family effector protein from Pantoea stewartii subsp. stewartii, causes disease-associated cell death in corn and requires a chaperone protein for stability.

Jong Hyun Ham; Doris R. Majerczak; Angel S. Arroyo-Rodríguez; David Mackey; David L. Coplin

The pathogenicity of Pantoea stewartii subsp. stewartii to sweet corn and maize requires a Hrp type III secretion system. In this study, we genetically and functionally characterized a disease-specific (Dsp) effector locus, composed of wtsE and wtsF, that is adjacent to the hrp gene cluster. WtsE, a member of the AvrE family of effector proteins, was essential for pathogenesis on corn and was complemented by DspA/E from Erwinia amylovora. An intact C-terminus of WtsE, which contained a putative endoplasmic reticulum membrane retention signal, was important for function of WtsE. Delivery of WtsE into sweet corn leaves by an Escherichia coli strain carrying the hrp cluster of Erwinia chrysanthemi caused water-soaking and necrosis. WtsE-induced cell death was not inhibited by cycloheximide treatment, unlike the hypersensitive response caused by a known Avr protein, AvrRxol. WtsF, the putative chaperone of WtsE, was not required for secretion of WtsE from P. stewartii, and the virulence of wtsF mutants was reduced only at low inoculum concentrations. However, WtsF was required for full accumulation of WtsE within the bacteria at low temperatures. In contrast, WtsF was needed for efficient delivery of WtsE from E. coli via the Erwinia chrysanthemi Hrp system.


Molecular Plant-microbe Interactions | 2009

Multiple Activities of the Plant Pathogen Type III Effector Proteins WtsE and AvrE Require WxxxE Motifs

Jong Hyun Ham; Doris R. Majerczak; Kinya Nomura; Christy Mecey; Francisco Uribe; Sheng Yang He; David Mackey; David L. Coplin

The broadly conserved AvrE-family of type III effectors from gram-negative plant-pathogenic bacteria includes important virulence factors, yet little is known about the mechanisms by which these effectors function inside plant cells to promote disease. We have identified two conserved motifs in AvrE-family effectors: a WxxxE motif and a putative C-terminal endoplasmic reticulum membrane retention/retrieval signal (ERMRS). The WxxxE and ERMRS motifs are both required for the virulence activities of WtsE and AvrE, which are major virulence factors of the corn pathogen Pantoea stewartii subsp. stewartii and the tomato or Arabidopsis pathogen Pseudomonas syringae pv. tomato, respectively. The WxxxE and the predicted ERMRS motifs are also required for other biological activities of WtsE, including elicitation of the hypersensitive response in nonhost plants and suppression of defense responses in Arabidopsis. A family of type III effectors from mammalian bacterial pathogens requires WxxxE and subcellular targeting motifs for virulence functions that involve their ability to mimic activated G-proteins. The conservation of related motifs and their necessity for the function of type III effectors from plant pathogens indicates that disturbing host pathways by mimicking activated host G-proteins may be a virulence mechanism employed by plant pathogens as well.


Molecular Plant-microbe Interactions | 1998

The hrpC and hrpN Operons of Erwinia chrysanthemi EC16 Are Flanked by plcA and Homologs of Hemolysin/Adhesin Genes and Accompanying Activator/Transporter Genes

Jihyun F. Kim; Jong Hyun Ham; David W. Bauer; Alan Collmer; Steven V. Beer

The hrpC operon of Erwinia chrysanthemi EC16 encodes five genes conserved in Erwinia amylovora and Pseudomonas syringae. Mutagenesis indicated that hrcC is required for elicitation of the hypersensitive reaction in tobacco leaves. The unexpected presence of plcA and homologs of hemolysin/activator genes in the regions flanking the hrcC and hrpN operons is reported.


Molecular Plant Pathology | 2008

WtsE, an AvrE-family type III effector protein of Pantoea stewartii subsp. stewartii, causes cell death in non-host plants

Jong Hyun Ham; Doris R. Majerczak; Sophie Ewert; Mysore-Venkatarau Sreerekha; David Mackey; David L. Coplin

Pantoea stewartii subsp. stewartii (Pnss) causes Stewarts bacterial wilt of sweet corn and leaf blight of maize. The pathogenicity of Pnss depends on synthesis of extracellular polysaccharide and an Hrp type III secretion system. WtsE, a type III secreted effector protein, is essential for the virulence of Pnss on corn. It belongs to the AvrE family of effectors, which includes DspA/E from Erwinia amylovora and AvrE1 from Pseudomonas syringae. Previously, WtsE was shown to cause disease-associated cell death in its host plant, sweet corn. Here, we examine the biological activity of WtsE in several non-host plants. WtsE induced cell death in Nicotiana benthamiana, tobacco, beet and Arabidopsis thaliana when it was transiently produced in plant cells following agroinfiltration or translocated into plant cells from Pnss, Escherichia coli or Pseudomonas syringae pv. phaseolicola (Pph). WtsE-induced cell death in N. benthamiana, tobacco and beet resembled a hypersensitive response and in N. benthamiana it was delayed by cycloheximide. Interestingly, WtsE strongly promoted the growth of Pnss in N. benthamiana prior to the onset of cell death. Deletion derivatives of WtsE that failed to induce cell death in N. benthamiana and tobacco also did not complement wtsE mutants of Pnss for virulence in sweet corn, indicating a correlation between the two activities. WtsE also induced cell death in A. thaliana, where it suppressed basal defences induced by Pph. Thus, WtsE has growth-promoting, defence-suppressing and cell death-inducing activities in non-host plants. Expression of WtsE also prevented the growth of yeast, possibly due to an innate toxicity to eukaryotic cells.


Molecular Plant-microbe Interactions | 2004

Analysis of Erwinia chrysanthemi EC16 pelE∷uidA, pelL∷uidA, and hrpN∷uidA Mutants Reveals Strain-Specific Atypical Regulation of the Hrp Type III Secretion System

Jong Hyun Ham; Yaya Cui; James R. Alfano; Pablo Rodríguez-Palenzuela; Clemencia M. Rojas; Arun K. Chatterjee; Alan Collmer

The plant pathogen Erwinia chrysanthemi produces a variety of factors that have been implicated in its ability to cause soft-rot diseases in various hosts. These include HrpN, a harpin secreted by the Hrp type III secretion system; PelE, one of several major pectate lyase isozymes secreted by the type II system; and PelL, one of several secondary Pels secreted by the type II system. We investigated these factors in E. chrysanthemi EC16 with respect to the effects of medium composition and growth phase on gene expression (as determined with uidA fusions and Northern analyses) and effects on virulence. pelE was induced by polygalacturonic acid, but pelL was not, and hrpN was expressed unexpectedly in nutrient-rich Kings medium B and in minimal salts medium at neutral pH. In contrast, the effect of medium composition on hrp expression in E. chrysanthemi CUCPB1237 and 3937 was like that of many other phytopathogenic bacteria in being repressed in complex media and induced in acidic pH minimal medium. Northern blot analysis of hrpN and hrpL expression by the wild-type and hrpL::omegaCmr and hrpS::omegaCmr mutants revealed that hrpN expression was dependent on the HrpL alternative sigma factor, whose expression, in turn, was dependent on the HrpS putative sigma54 enhancer binding protein. The expression of pelE and hrpN increased strongly in late logarithmic growth phase. To test the possible role of quorum sensing in this expression pattern, the expI/expR locus was cloned in Escherichia coli on the basis of its ability to direct production of acyl-homoserine lactone and then used to construct expI mutations in pelE::uidA, pelL::uidA, and hrpN::uidA Erwinia chrysanthemi strains. Mutation of expI had no apparent effect on the growth-phase-dependent expression of hrpN and pelE, or on the virulence of E. chrysanthemi in witloof chicory leaves. Overexpression of hrpN in E. chrysanthemi resulted in approximately 50% reduction of lesion size on chicory leaves without an effect on infection initiation.


Molecular Plant-microbe Interactions | 2004

The Erwinia chrysanthemi EC16 hrp/hrc Gene Cluster Encodes an Active Hrp Type III Secretion System That Is Flanked by Virulence Genes Functionally Unrelated to the Hrp System

Clemencia M. Rojas; Jong Hyun Ham; Lisa M. Schechter; Jihyun F. Kim; Steven V. Beer; Alan Collmer

Erwinia chrysanthemi is a host-promiscuous plant pathogen that possesses a type III secretion system (TTSS) similar to that of the host-specific pathogens E. amylovora and Pseudomonas syringae. The regions flanking the TTSS-encoding hrp/hrc gene clusters in the latter pathogens encode various TTSS-secreted proteins. DNA sequencing of the complete E. chrysanthemi hrp/hrc gene cluster and approximately 12 kb of the flanking regions (beyond the previously characterized hecA adhesin gene in the left flank) revealed that the E. chrysanthemi TTSS genes were syntenic and similar (>50% amino-acid identity) with their E. amylovora orthologs. However, the hrp/hrc cluster was interrupted by a cluster of four genes, only one of which, a homolog of lytic transglycosylases, is implicated in TTSS functions. Furthermore, the regions flanking the hrp/hrc cluster lacked genes that were likely to encode TTSS substrates. Instead, some of the genes in these regions predict ABC transporters and methyl-accepting chemotaxis proteins that could have alternative roles in virulence. Mutations affecting all of the genes in the regions flanking or interrupting the hrp/hrc cluster were constructed in E. chrysanthemi CUCPB5047, a mutant whose reduced pectolytic capacity can enhance the phenotype of minor virulence factors. Mutants were screened in witloof chicory leaves and then in potato tubers and Nicotiana clevelandii seedlings. Mu dII1734 insertion in one gene, designated virA, resulted in strongly reduced virulence in all three tests. virA is immediately downstream of hecA, has an unusually low G+C content of 38%, and predicts an unknown protein of 111 amino acids. The E. chrysanthemi TTSS was shown to be active by its ability to translocate AvrPto-Cya (a P. syringae TTSS effector fused to an adenylate cyclase reporter that is active in the presence of eukaryote calmodulin) into N. benthamiana leaf cells. However, VirA(1-61)-Cya was not translocated into plant cells, and virA expression was not affected by mutations in E. chrysanthemi Hrp regulator genes hrpL and hrpS. Thus, the 44-kb region of the E. chrysanthemi EC16 genome that is centered on the hrplhrc cluster encodes a potpourri of virulence factors, but none of these appear to be a TTSS effector.


PLOS ONE | 2013

The Pseudomonas syringae pv. tomato type III effector HopM1 suppresses Arabidopsis defenses independent of suppressing salicylic acid signaling and of targeting AtMIN7.

Anju Gangadharan; Mysore-Venkatarau Sreerekha; Justin G. A. Whitehill; Jong Hyun Ham; David Mackey

Pseudomonas syringae pv tomato strain DC3000 (Pto) delivers several effector proteins promoting virulence, including HopM1, into plant cells via type III secretion. HopM1 contributes to full virulence of Pto by inducing degradation of Arabidopsis proteins, including AtMIN7, an ADP ribosylation factor-guanine nucleotide exchange factor. Pseudomonas syringae pv phaseolicola strain NPS3121 (Pph) lacks a functional HopM1 and elicits robust defenses in Arabidopsis thaliana, including accumulation of pathogenesis related 1 (PR-1) protein and deposition of callose-containing cell wall fortifications. We have examined the effects of heterologously expressed HopM1Pto on Pph-induced defenses. HopM1 suppresses Pph-induced PR-1 expression, a widely used marker for salicylic acid (SA) signaling and systemic acquired resistance. Surprisingly, HopM1 reduces PR-1 expression without affecting SA accumulation and also suppresses the low levels of PR-1 expression apparent in SA-signaling deficient plants. Further, HopM1 enhances the growth of Pto in SA-signaling deficient plants. AtMIN7 contributes to Pph-induced PR-1 expression. However, HopM1 fails to degrade AtMIN7 during Pph infection and suppresses Pph-induced PR-1 expression and callose deposition in wild-type and atmin7 plants. We also show that the HopM1-mediated suppression of PR-1 expression is not observed in plants lacking the TGA transcription factor, TGA3. Our data indicate that HopM1 promotes bacterial virulence independent of suppressing SA-signaling and links TGA3, AtMIN7, and other HopM1 targets to pathways distinct from the canonical SA-signaling pathway contributing to PR-1 expression and callose deposition. Thus, efforts to understand this key effector must consider multiple targets and unexpected outputs of its action.


PLOS Pathogens | 2016

Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

Lin Jin; Jong Hyun Ham; Rosemary Hage; Wanying Zhao; Jaricelis Soto-Hernández; Sang Yeol Lee; Seung-Mann Paek; Min Gab Kim; Charles Boone; David L. Coplin; David Mackey

Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B’ regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B’ subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B’ subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B’ subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B’ subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.


Proceedings of the National Academy of Sciences of the United States of America | 1998

A cloned Erwinia chrysanthemi Hrp (type III protein secretion) system functions in Escherichia coli to deliver Pseudomonas syringae Avr signals to plant cells and to secrete Avr proteins in culture

Jong Hyun Ham; David W. Bauer; Derrick E. Fouts; Alan Collmer

Collaboration


Dive into the Jong Hyun Ham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clemencia M. Rojas

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge