Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jong In Yook is active.

Publication


Featured researches published by Jong In Yook.


Nature Cell Biology | 2006

A Wnt–Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells

Jong In Yook; Xiao Yan Li; Ichiro Ota; Casey Hu; Hyun Sil Kim; Nam Hee Kim; So Young Cha; Joo Kyung Ryu; Yoon Jung Choi; Eric R. Fearon; Stephen J. Weiss

Accumulating evidence indicates that hyperactive Wnt signalling occurs in association with the development and progression of human breast cancer. As a consequence of engaging the canonical Wnt pathway, a β-catenin–T-cell factor (TCF) transcriptional complex is generated, which has been postulated to trigger the epithelial–mesenchymal transition (EMT) that characterizes the tissue-invasive phenotype. However, the molecular mechanisms by which the β-catenin–TCF complex induces EMT-like programmes remain undefined. Here, we demonstrate that canonical Wnt signalling engages tumour cell dedifferentiation and tissue-invasive activity through an Axin2-dependent pathway that stabilizes the Snail1 zinc-transcription factor, a key regulator of normal and neoplastic EMT programmes. Axin2 regulates EMT by acting as a nucleocytoplasmic chaperone for GSK3β, the dominant kinase responsible for controlling Snail1 protein turnover and activity. As dysregulated Wnt signalling marks a diverse array of cancerous tissue types, the identification of a β-catenin–TCF-regulated Axin2–GSK3β–Snail1 axis provides new mechanistic insights into cancer-associated EMT programmes.


Science Signaling | 2011

p53 and microRNA-34 are suppressors of canonical Wnt signaling.

Nam Hee Kim; Hyun Sil Kim; Nam Gyun Kim; Inhan Lee; Hyung Seok Choi; Xiao Yan Li; Shi Eun Kang; So Young Cha; Joo Kyung Ryu; Jung Min Na; Changbum Park; Kunhong Kim; Sanghyuk Lee; Barry M. Gumbiner; Jong In Yook; Stephen J. Weiss

The tumor suppressor p53 activates miRNA-34 to inhibit Wnt signaling and colorectal cancer cell invasiveness. p53 Activates MicroRNA-34 to Inhibit Wnt Signaling The tumor suppressor p53 is missing or nonfunctional in many cancers, whereas the canonical Wnt signaling pathway is frequently activated. Here, Kim et al. show that p53 restrained Wnt signaling during Xenopus development, whereas loss of p53 function led to aberrant activation of the canonical Wnt signaling pathway, with microRNA-34 (miR-34) providing the connection between the two. They found that p53 stimulated production of miR-34, which, in turn, targeted key genes in the Wnt signaling pathway. Analyses of gene expression data sets indicated that loss of p53 or miR-34 function was associated with activation of Wnt signaling in human cancers; moreover, loss of p53 function increased Wnt signaling in colon cancer cells in vitro. In p53-mutant colon cancer cells, miR-34 attenuated Wnt signaling and decreased the invasiveness of these cells in vitro. Thus, the p53–miR-34–Wnt pathway appears to be crucial not only during development but also for p53’s tumor suppressor function. Although loss of p53 function and activation of canonical Wnt signaling cascades are frequently coupled in cancer, the links between these two pathways remain unclear. We report that p53 transactivated microRNA-34 (miR-34), which consequently suppressed the transcriptional activity of β-catenin–T cell factor and lymphoid enhancer factor (TCF/LEF) complexes by targeting the untranslated regions (UTRs) of a set of conserved targets in a network of genes encoding elements of the Wnt pathway. Loss of p53 function increased canonical Wnt signaling by alleviating miR-34–specific interactions with target UTRs, and miR-34 depletion relieved p53-mediated Wnt repression. Gene expression signatures reflecting the status of β-catenin–TCF/LEF transcriptional activity in breast cancer and pediatric neuroblastoma patients were correlated with p53 and miR-34 functional status. Loss of p53 or miR-34 contributed to neoplastic progression by triggering the Wnt-dependent, tissue-invasive activity of colorectal cancer cells. Further, during development, miR-34 interactions with the β-catenin UTR affected Xenopus body axis polarity and the expression of Wnt-dependent patterning genes. These data provide insight into the mechanisms by which a p53–miR-34 network restrains canonical Wnt signaling cascades in developing organisms and human cancer.


The EMBO Journal | 2010

Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition.

Sang Yoon Park; Hyun Sil Kim; Nam Hee Kim; Suena Ji; So Young Cha; Jeong Gu Kang; Ichiro Ota; Keiji Shimada; Noboru Konishi; Hyung Wook Nam; Soon Won Hong; Won Ho Yang; Jürgen Roth; Jong In Yook; Jin Won Cho

Protein O‐phosphorylation often occurs reciprocally with O‐GlcNAc modification and represents a regulatory principle for proteins. O‐phosphorylation of serine by glycogen synthase kinase‐3β on Snail1, a transcriptional repressor of E‐cadherin and a key regulator of the epithelial–mesenchymal transition (EMT) programme, results in its proteasomal degradation. We show that by suppressing O‐phosphorylation‐mediated degradation, O‐GlcNAc at serine112 stabilizes Snail1 and thus increases its repressor function, which in turn attenuates E‐cadherin mRNA expression. Hyperglycaemic condition enhances O‐GlcNAc modification and initiates EMT by transcriptional suppression of E‐cadherin through Snail1. Thus, dynamic reciprocal O‐phosphorylation and O‐GlcNAc modification of Snail1 constitute a molecular link between cellular glucose metabolism and the control of EMT.


Cancer Letters | 2002

Induction of apoptosis and caspase-3 activation by chemopreventive [6]-paradol and structurally related compounds in KB cells

Young-Sam Keum; Keun Hyung Lee; Kwang Kyun Park; Young-Joon Surh; Jong-Min Lee; Sang-Sup Lee; Jung Hoon Yoon; So Yeon Joo; In Ho Cha; Jong In Yook

[6]-paradol, a pungent phenolic substance found in ginger and other Zingiberaceae plants, has been demonstrated to be an effective inhibitor of tumor promotion in mouse skin carcinogenesis. In the present study, we found that [6]-paradol and other structurally related derivatives, [10]-paradol, [3]-dehydroparadol, [6]-dehydroparadol, and [10]-dehydroparadol, with the exception of [3]-paradol induce apoptosis in an oral squamous carcinoma cell line, KB, in a dose-dependent manner. [10]-paradol and [10]-dehydroparadol exhibited a similar extent of cytotoxicity to that of [6]-paradol. [6]-Dehydroparadol and [3]-dehydroparadol appeared to be more potent, with an IC50 less than 40 microM. Treatment of KB cells with an apoptosis-inducing concentration of [6]-dehydroparadol caused induction of proteolytic cleavage of pro-caspase-3. These results suggest that [6]-paradol and structurally related derivatives induce apoptosis through a caspase-3-dependent mechanism.


Cell Cycle | 2012

MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling

Yong Hoon Cha; Nam Hee Kim; Changbum Park; Inhan Lee; Hyun Sil Kim; Jong In Yook

Though tumor suppressor p53 and the canonical Wnt cascade have been extensively studied for the last 30 years, due to their important physiological roles, the two signaling pathways have been largely considered independent. Recently, the miR-34 family was found to directly link p53 and Wnt, revealing the tight connection between loss of tumor suppressor function and activation of oncogenic signaling. These observations demonstrate that miR-34, known to be directly downstream of p53, targets a set of highly conserved sites in the UTR of Wnt and EMT genes, specifically WNT1, WNT3, LRP6, AXIN2, β-catenin, LEF1 and Snail, resulting in suppression of TCF/LEF transcriptional activity and the EMT program. The loss of p53 function increases Wnt activities and promotes the Snail-dependent EMT program at multiple levels in a miR-34/UTR-specific manner. The TCF/LEF transcriptional signature was closely associated with functionality of p53 and miR-34 in clinical samples, suggesting the pervasive impact of miR-34 loss on the oncogenic pathway in human cancer. Here, we review recent findings on ceRNA in light of novel data to elucidate the physiological relevance of the p53-miR-34-Wnt network, which encompasses sets of genes and directions of signaling. As loss of wt-p53 or hyperactivation of Wnt is critical in maintaining cancer stem cell properties and in establishing the metastatic program, these observations indicate a mechanism of miR-mediated quasi-sufficiency which connects tumor suppressor and oncogenic signaling pathways, supporting a continuum model of human cancer.


ACS Nano | 2012

Consecutive Targetable Smart Nanoprobe for Molecular Recognition of Cytoplasmic microRNA in Metastatic Breast Cancer

Eun Jung Kim; Jaemoon Yang; Joseph Park; Soonhag Kim; Nam Hee Kim; Jong In Yook; Jin-Suck Suh; Seungjoo Haam; Yong-Min Huh

We report smart nanoprobe, hyaluronic acid (HA)-based nanocontainers containing miR-34a beacons (bHNCs), for the intracellular recognition of miR-34a levels in metastatic breast cancer cells, which is distinct from the imaging of biomarkers such of cell membrane receptors such as HER2. In this study, we demonstrate that a nanoscale vesicle that couples a targeting endocytic route, CD44, and a molecular imaging probe enables the efficient detection of specific miRNAs. Furthermore, bHNCs showed no cytotoxicity and high stability due to the anchored HA molecules on the surface of nanocontainers, and enables the targeted delivery of beacons via CD44 receptor-mediated endocytosis. In vitro and in vivo optical imaging using bHNCs also allow the measurement of miR-34a expression levels due to the selective recognition of the beacons released from the internalized bHNCs. We believe that the technique described herein can be further developed as a cancer diagnostic as well as a miRNA-based therapy of metastatic cancer.


Cell Cycle | 2013

p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells

Nam Hee Kim; Yong Hoon Cha; Shi Eun Kang; Yoon Mi Lee; Inhan Lee; So Young Cha; Joo Kyung Ryu; Jung Min Na; Changbum Park; Ho-Geun Yoon; Gyeong-Ju Park; Jong In Yook; Hyun Sil Kim

p53 is a bona fide tumor suppressor gene whose loss of function marks the most common genetic alteration in human malignancy. Although the causal link between loss of p53 function and tumorigenesis has been clearly demonstrated, the mechanistic links by which loss of p53 potentiates oncogenic signaling are not fully understood. Recent evidence indicates that the microRNA-34 (miR-34) family, a transcriptional target of the p53, directly suppresses a set of canonical Wnt genes and Snail, resulting in p53-mediated suppression of Wnt signaling and the EMT process. In this study, we report that p53 regulates GSK-3β nuclear localization via miR-34-mediated suppression of Axin2 in colorectal cancer. Exogenous miR-34a decreases Axin2 UTR-reporter activity through multiple binding sites within the 5′ and 3′ UTR of Axin2. Suppression of Axin2 by p53 or miR-34 increases nuclear GSK-3β abundance and leads to decreased Snail expression in colorectal cancer cells. Conversely, expression of the non-coding UTR of Axin2 causes depletion of endogenous miR-34 via the miR-sponge effect together with increased Axin2 function, supporting that the RNA-RNA interactions with Axin2 transcripts act as an endogenous decoy for miR-34. Further, RNA transcripts of miR-34 target were correlated with Axin2 in clinical data set of colorectal cancer patients. Although the biological relevance of nuclear GSK-3 level has not been fully studied, our results demonstrate that the tumor suppressor p53/miR-34 axis plays a role in regulating nuclear GSK-3 levels and Wnt signaling through the non-coding UTR of Axin2 in colorectal cancer.


Molecular Cell | 2011

Reversible SUMOylation of TBL1-TBLR1 Regulates β-Catenin-Mediated Wnt Signaling

Hyo-Kyoung Choi; Kyung-Chul Choi; Jung-Yoon Yoo; Meiying Song; Suk Jin Ko; Chul Hoon Kim; Jin-Hyun Ahn; Kyung-Hee Chun; Jong In Yook; Ho-Geun Yoon

Dysregulation of Wnt signaling has been implicated in tumorigenesis. The role of Transducin β-like proteins TBL1-TBLR1 in the promotion of Wnt/β-catenin-mediated oncogenesis has recently been emphasized; however, the molecular basis of activation of Wnt signaling by the corepressor TBL1-TBLR1 is incompletely understood. Here, we show that both TBL1 and TBLR1 are SUMOylated in a Wnt signaling-dependent manner, and that this modification is selectively reversed by SUMO-specific protease I (SENP1). SUMOylation dismissed TBL1-TBLR1 from the nuclear hormone receptor corepressor (NCoR) complex, increased recruitment of the TBL1-TBLR1-β-catenin complex to the promoter of Wnt target genes, and consequently led to activation of Wnt signaling. Conversely, SENP1 decreased formation of the TBL1-TBLR1-β-catenin complex, leading to inhibition of β-catenin-mediated transcription. Importantly, inhibition of SUMOylation significantly decreased the tumorigenicity of SW480 colon cancer cells. Thus, our data reveal a mechanism for activation of Wnt signaling via the SUMOylation-dependent disassembly of the corepressor complex.


Journal of Biological Chemistry | 2009

O-GlcNAc protein modification in cancer cells increases in response to glucose deprivation through glycogen degradation

Jeong Gu Kang; Sang Yoon Park; Suena Ji; Insook Jang; Sujin Park; Hyun Sil Kim; Sung-Min Kim; Jong In Yook; Yong-Il Park; Jürgen Roth; Jin Won Cho

When cellular glucose concentrations fall below normal levels, in general the extent of protein O-GlcNAc modification (O-GlcNAcylation) decreases. However, recent reports demonstrated increased O-GlcNAcylation by glucose deprivation in HepG2 and Neuro-2a cells. Here, we report increased O-GlcNAcylation in non-small cell lung carcinoma A549 cells and various other cells in response to glucose deprivation. Although the level of O-GlcNAc transferase was unchanged, the enzyme contained less O-GlcNAc, and its activity was increased. Moreover, O-GlcNAcase activity was reduced. The studied cells contain glycogen, and we show that its degradation in response to glucose deprivation provides a source for UDP-GlcNAc required for increased O-GlcNAcylation under this condition. This required active glycogen phosphorylase and resulted in increased glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting enzyme in the hexosamine biosynthetic pathway. Interestingly, glucose deprivation reduced the amount of phosphofructokinase 1, a regulatory glycolytic enzyme, and blocked ATP synthesis. These findings suggest that glycogen is the source for increased O-GlcNAcylation but not for generating ATP in response to glucose deprivation and that this may be useful for cancer cells to survive.


European Journal of Cancer. Part B: Oral Oncology | 1994

Immunohistochemical study on proliferating cell nuclear antigen expression in ameloblastomas

Jin Kim; Jong In Yook

The aim of this study is to evaluate the proliferating activity of ameloblastomas and its correlation to the biological behaviour according to each histological type. 38 cases of solid and unicystic ameloblastomas were reviewed including 1 case of ameloblastic carcinoma and 1 recurrent case. An anti-PCNA antibody, PC10(Dako), was applied for the detection of proliferating cell nuclear antigen (PCNA) in paraffin embedded tissue sections. Also 20 cases of dentigerous cysts were reviewed. In conclusion, we observed that there was no difference between the proliferating activities of the different histological types of solid ameloblastomas. Because 1 case of ameloblastic carcinoma and one recurrent case revealed remarkably high PCNA reactivity, we believe that PCNA would be useful in showing the differentiation between benign and malignant ameloblastomas. In unicystic ameloblastomas, plexiform intraluminal growth was considered to be an important feature in tumorous transformation of cystic epithelium.

Collaboration


Dive into the Jong In Yook's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge