Jong-Jin Baik
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jong-Jin Baik.
Journal of Applied Meteorology and Climatology | 2010
C. S. B. Grimmond; Matthew Blackett; M. J. Best; Janet F. Barlow; Jong-Jin Baik; Stephen E. Belcher; Sylvia I. Bohnenstengel; I. Calmet; Fei Chen; A. Dandou; Krzysztof Fortuniak; M.L. Gouvea; Rafiq Hamdi; M. Hendry; T. Kawai; Y. Kawamoto; Hiroaki Kondo; E. S. Krayenhoff; S. H. Lee; Thomas Loridan; Alberto Martilli; Valéry Masson; Shiguang Miao; Keith W. Oleson; G. Pigeon; Aurore Porson; Young Hee Ryu; Francisco Salamanca; L. Shashua-Bar; G.J. Steeneveld
A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no comparison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.
Journal of Applied Meteorology | 2002
Yeon-Hee Kim; Jong-Jin Baik
Abstract The maximum urban heat island (UHI) intensity in Seoul, Korea, is investigated using data measured at two meteorological observatories (an urban site and a rural site) during the period of 1973–96. The average maximum UHI is weakest in summer and is strong in autumn and winter. Similar to previous studies for other cities, the maximum UHI intensity is more frequently observed in the nighttime than in the daytime, decreases with increasing wind speed, and is pronounced for clear skies. A multiple linear regression analysis is performed to relate the maximum UHI to meteorological elements. Four predictors considered in this study are the maximum UHI intensity for the previous day, wind speed, cloudiness, and relative humidity. The previous-day maximum UHI intensity is positively correlated with the maximum UHI, and the wind speed, cloudiness, and relative humidity are negatively correlated with the maximum UHI intensity. Among the four predictors, the previous-day maximum UHI intensity is the most ...
Journal of Applied Meteorology | 1999
Jong-Jin Baik; Jae-Jin Kim
Abstract The flow and pollutant dispersion in urban street canyons are investigated using a two-dimensional numerical model with the k–e turbulent closure scheme. It is shown that the flow field is characterized mainly by the number and intensity of vortices produced in the street canyon. As the street aspect ratio (ratio of the building height to the width between buildings) increases, the number of vortices increases. In the upper-canyon region, the downward motion near the downwind building is stronger than the upward motion near the upwind building, and the turbulent kinetic energy (TKE) is higher near the downwind building than near the upwind building because of stronger wind shears near the downwind building. The TKE budget analysis shows that the shear production is high near the interface between the ambient flow and the street canyon flow and that the turbulent dissipation is also high where the shear production is high. The horizontal advection and diffusion are found to play a crucial role in ...
Journal of Applied Meteorology | 2005
Yeon-Hee Kim; Jong-Jin Baik
Abstract The spatial and temporal structure of the urban heat island in Seoul, Korea, is investigated using near-surface temperature data measured at 31 automatic weather stations (AWSs) in the Seoul metropolitan area for the 1-yr period from March 2001 to February 2002. The urban heat island in Seoul deviates considerably from an idealized, concentric heat island structure, mainly because of the location of the main commercial and industrial sectors and the local topography. Relatively warm regions extend in the east–west direction and relatively cold regions are located near the northern and southern mountains. Several warm cores are observed whose intensity, size, and location are found to vary seasonally and diurnally. Similar to previous studies, the urban heat island in Seoul is stronger in the nighttime than in the daytime and decreases with increasing wind speed and cloud cover, but it is least developed in summer. The average maximum urban heat island intensity is 2.2°C over the 1-yr period and i...
Journal of Applied Meteorology | 1999
Jae-Jin Kim; Jong-Jin Baik
Abstract This study investigates thermal effects on the flow and pollutant dispersion in urban street canyons. A two-dimensional numerical model with a k–ϵ turbulent closure scheme is developed, and the heat transfer between the air and the building wall or street-canyon bottom is effectively represented by a wall function. For each of seven cases with different aspect ratios (building height/width between buildings = 0.5, 1, 1.5, 2, 2.5, 3, and 3.5), four thermal situations (no heating, upwind building-wall heating, street-canyon bottom heating, and downwind building-wall heating) are considered. In the cases of upwind building-wall heating, one vortex appears regardless of aspect ratio. When the aspect ratio is greater than or equal to 1.5, the upward motion forced by upwind building-wall heating overcomes the downward motion that appears in the cases of no heating. In the cases of street-canyon bottom heating, when the aspect ratio is less than 3, flow patterns are similar to those in the cases of upwi...
Atmospheric Environment | 2002
Jong-Jin Baik; Jae-Jin Kim
Pollutant transport from urban street canyons is numerically investigated using a two-dimensional flow and dispersion model. The ambient wind blows perpendicular to the street and passive pollutants are released at the street level. Results from the control experiment with a street aspect ratio of 1 show that at the roof level of the street canyon, the vertical turbulent flux of pollutants is upward everywhere and the vertical flux of pollutants by mean flow is upward or downward. The horizontally integrated vertical flux of pollutants by mean flow at the roof level of the street canyon is downward and its magnitude is much smaller than that by turbulent process. These results indicate that pollutants escape from the street canyon mainly by turbulent process and that the net effect of mean flow is to make some escaped pollutants reenter the street canyon. Further experiments with different inflow turbulence intensities, inflow wind speeds, and street aspect ratio confirm the findings from the control experiment. In the case of two isolated buildings, the horizontally integrated vertical flux of pollutants by mean flow is upward due to flow separation but the other main results are the same as those from the control experiment.
Journal of Applied Meteorology | 2001
Jong-Jin Baik; Yeon-Hee Kim; Hye-Yeong Chun
Abstract This study numerically investigates dry and moist convection forced by an urban heat island using a two-dimensional, nonhydrostatic, compressible model with explicit cloud microphysical processes (Advanced Regional Prediction System). The urban heat island is represented by specified heating. Extensive numerical experiments with various heating amplitudes, representing the intensity of the urban heat island, uniform basic-state wind speeds, and basic-state relative humidities, are performed to examine their roles in characterizing urban-induced convection. Two flow regimes can be identified in dry simulations. One regime is characterized only by stationary gravity waves near the heating region and is revealed when the urban heat island intensity is very weak. The other regime is characterized both by stationary gravity waves near the heating region and by a downwind updraft cell that moves in the downstream direction. The intensity of the downwind updraft cell increases as the heat island intensi...
Journal of the Atmospheric Sciences | 1998
Hye-Yeong Chun; Jong-Jin Baik
Abstract Gravity wave momentum flux induced by thermal forcing representing latent heating due to cumulus convection is investigated analytically from a viewpoint of a subgrid-scale drag for the large-scale flow, and a possible way to parameterize the momentum flux in large-scale models is proposed. For the formulations of the momentum flux and its vertical derivative, two-dimensional, steady-state, linear perturbations induced by thermal forcing in a uniform basic-state wind are considered. The calculated momentum flux is zero below the forcing bottom, varies with height in the forcing region, and remains constant above the forcing top with the forcing top value. The sign of the momentum flux at the forcing top depends on the basic-state wind according to the wave energy–momentum flux relationship. Inside the forcing region, there exists a vertical convergence or divergence of the momentum flux that can influence the zonal mean flow tendency. The maximum magnitude of the zonal mean flow tendency contribu...
Journal of Applied Meteorology | 2000
Jong-Jin Baik; Rae-Seol Park; Hye-Yeong Chun; Jae-Jin Kim
Abstract A circulating water channel is constructed to examine urban street-canyon flow. In the cases of an even-notch street canyon in which model buildings on both sides of the street have equal heights, one vortex is observed in model canyons with aspect ratios of 1 and 1.5, and two counterrotating vortices are observed in canyons with aspect ratios of 2, 2.4, and 3. In all of the even-notch cases, the center of the vortex (or the upper vortex) is located slightly downstream of the canyon center, and the downward motion downstream is stronger than the upward motion upstream. The magnitudes of the maximum updraft and downdraft are almost independent of the aspect ratio. In the case of a stepup notch, one vortex is observed in the canyon. In the case of a stepdown notch, two counterrotating vortices are observed. The upper vortex resembles to some extent an isolated roughness flow, and the lower vortex is characterized by a skimming flow. It is shown that the results of the water-channel experiments are ...
Journal of Wind Engineering and Industrial Aerodynamics | 2003
Jae-Jin Kim; Jong-Jin Baik
The effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon with a street aspect ratio of 1 are examined using a two-dimensional numerical model. As the inflow turbulence intensity increases, turbulent kinetic energy and turbulent diffusivity in the street canyon increases. Also, the mean horizontal velocity near the roof level increases and the street-canyon vortex strengthens. The analyses of the time series and residue ratio of pollutant concentration show that the inflow turbulence intensity significantly affects pollutant concentration in the street canyon. As the inflow turbulence intensity increases, the pollutant concentration in the street canyon becomes low and hence more pollutants escape from the street canyon.