Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jong K. Keum is active.

Publication


Featured researches published by Jong K. Keum.


Langmuir | 2014

Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon.

Dipendu Saha; Yunchao Li; Zhonghe Bi; Jihua Chen; Jong K. Keum; Dale K. Hensley; Hippolyte A. Grappe; Harry M. Meyer; Sheng Dai; M. Parans Paranthaman; Amit K. Naskar

We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum Brunauer-Emmett-Teller (BET) specific surface area of 1148 m(2)/g and a pore volume of 1.0 cm(3)/g. Both physical and chemical activation enhanced the mesoporosity along with significant microporosity. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited a range of surface-area-based capacitance similar to that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and enhanced the gravimetric specific capacitance of the mesoporous carbons. A vertical tail in the lower-frequency domain of the Nyquist plot provided additional evidence of good supercapacitor behavior for the activated mesoporous carbons. We have modeled the equivalent circuit of the Nyquist plot with the help of two constant phase elements (CPE). Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.


Journal of the American Chemical Society | 2013

Surface-Induced Orientation Control of CuPc Molecules for the Epitaxial Growth of Highly Ordered Organic Crystals on Graphene

Kai Xiao; Wan Deng; Jong K. Keum; Mina Yoon; Ivan Vlassiouk; Kendal Clark; An-Ping Li; Ivan I. Kravchenko; Gong Gu; E. A. Payzant; Bobby G. Sumpter; Sean C. Smith; James F. Browning; David B. Geohegan

The epitaxial growth and preferred molecular orientation of copper phthalocyanine (CuPc) molecules on graphene has been systematically investigated and compared with growth on Si substrates, demonstrating the role of surface-mediated interactions in determining molecular orientation. X-ray scattering and diffraction, scanning tunneling microscopy, scanning electron microscopy, and first-principles theoretical calculations were used to show that the nucleation, orientation, and packing of CuPc molecules on films of graphene are fundamentally different compared to those grown on Si substrates. Interfacial dipole interactions induced by charge transfer between CuPc molecules and graphene are shown to epitaxially align the CuPc molecules in a face-on orientation in a series of ordered superstructures. At high temperatures, CuPc molecules lie flat with respect to the graphene substrate to form strip-like CuPc crystals with micrometer sizes containing monocrystalline grains. Such large epitaxial crystals may potentially enable improvement in the device performance of organic thin films, wherein charge transport, exciton diffusion, and dissociation are currently limited by grain size effects and molecular orientation.


Scientific Reports | 2016

Epitaxial stabilization and phase instability of VO2 polymorphs.

Shinbuhm Lee; Ilia N. Ivanov; Jong K. Keum; Ho Nyung Lee

The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.


CrystEngComm | 2013

Solvent quality-induced nucleation and growth of parallelepiped nanorods in dilute poly(3-hexylthiophene) (P3HT) solution and the impact on the crystalline morphology of solution-cast thin film

Jong K. Keum; Kai Xiao; Ilia N. Ivanov; Kunlun Hong; James F. Browning; Gregory S. Smith; Ming Shao; Kenneth C. Littrell; Adam J. Rondinone; E. Andrew Payzant; Jihua Chen; Dale K. Hensley

Understanding the chain conformation of conjugated polymers in casting solutions and its impact on the crystalline morphology of solution-cast thin films is crucial for many electronic applications. Using small-angle neutron scattering, we show that well-dissolved poly(3-hexyl thiophene) (P3HT) chains in good solvent (chloroform) form long rectangular parallelepipeds (RPs) via nucleation and growth processes upon increasing the volume fraction of poor solvent (hexane) above a certain critical point. The growth of the RPs is due to the π–π stacking of the P3HT main backbone occurring along the long axis of the RPs. P3HT solutions prepared with different poor solvent volume fractions were drop-cast onto Si-wafers to prepare thin films, which were examined using 2D grazing-incidence X-ray scattering and 1D X-ray diffraction. The results indicate that the RPs grown in solution preferentially orient on the substrate with their two longer axes parallel to the surface after solvent evaporation, and give rise to much improved crystallinity and crystal orientation compared to the disordered chains.


ACS Applied Materials & Interfaces | 2014

In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode LiMn1.5Ni0.5O4

James F. Browning; Loïc Baggetto; Katherine L. Jungjohann; Yongqiang Wang; Wyatt E. Tenhaeff; Jong K. Keum; David L. Wood; Gabriel M. Veith

Using neutron reflectometry, we have determined the thickness and scattering length density profile of the electrode-electrolyte interface for the high-voltage cathode LiMn(1.5)Ni(0.5)O4 in situ at open circuit voltage and fully delithiated. Upon exposure to a liquid electrolyte, a thin 3.3 nm Li-rich interface forms due to the ordering of the electrolyte on the cathode surface. This interface changes in composition, as evident by an increase in the scattering length density of the new layer, with charging as the condensed layer evolves from being lithium rich to one containing a much higher concentration of F from the LiPF6 salt. These results show the surface chemistry evolves as a function of the potential.


Nature Nanotechnology | 2016

Polymer matrix nanocomposites for automotive structural components

Amit K. Naskar; Jong K. Keum; Raymond G. Boeman

Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.


Journal of Materials Chemistry C | 2013

High-performance organic field-effect transistors with dielectric and active layers printed sequentially by ultrasonic spraying

Ming Shao; Sanjib Das; Kai Xiao; Jihua Chen; Jong K. Keum; Ilia N. Ivanov; Gong Gu; William Durant; Dawen Li; David B. Geohegan

High-performance organic field-effect transistors (OFETs) are reported with dielectric and active layers sequentially deposited by ultrasonic spray-printing. A cross-linkable insulator and a soluble small molecule semiconductor are developed which are both printable and highly robust. Using plastic with pre-patterned indium tin oxide gate contacts as required for display applications, two different layers are sequentially spray-printed: the semiconductor 6,13-bis(trisopropylsilylethynyl)pentacene (TIPS-PEN), and the insulator poly-4-vinylphenol (PVP). OFETs printed in ambient air with a bottom-gate/top-contact geometry are shown to achieve on/off ratios of >104 and mobilities up to 0.35 cm2 V−1 s−1. These rival the characteristics of the best solution-processable small molecule FETs fabricated by other processing methods such as drop casting and ink-jet printing.


Journal of Materials Chemistry | 2017

Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage

Jesse Pokrzywinski; Jong K. Keum; Rose E. Ruther; Ethan C. Self; Miaofang Chi; Harry M. Meyer; Kenneth C. Littrell; Darpandeep Aulakh; Sam Marble; Jia Ding; Mario Wriedt; Jagjit Nanda; David Mitlin

We created Immense Surface Area Carbons (ISACs) by a novel heat treatment that stabilized the micelle structure in a biological based precursor prior to high temperature combined activation – pyrolysis. While displaying a morphology akin to that of commercial activated carbon, ISACs contain an unparalleled combination of electrochemically active surface area and pore volume (up to 4051 m2 g−1, total pore volume 2.60 cm3 g−1, 76% small mesopores). The carbons also possess the benefit of being quite pure (combined O and N: 2.6–4.1 at%), thus allowing for a capacitive response that is primarily EDLC. Tested at commercial mass loadings (∼10 mg cm−2) ISACs demonstrate exceptional specific capacitance values throughout the entire relevant current density regime, with superior rate capability primarily due to the large fraction of mesopores. In the optimized ISAC, the specific capacitance (Cg) is 540 F g−1 at 0.2 A g−1, 409 F g−1 at 1 A g−1 and 226 F g−1 at a very high current density of 300 A g−1 (∼0.15 second charge time). At intermediate and high currents, such capacitance values have not been previously reported for any carbon. Tested with a stable 1.8 V window in a 1 M Li2SO4 electrolyte, a symmetric supercapacitor cell yields a flat energy–power profile that is fully competitive with those of organic electrolyte systems: 29 W h kg−1 at 442 W kg−1 and 17 W h kg−1 at 3940 W kg−1. The cyclability of symmetric ISAC cells is also exceptional due to the minimization of faradaic reactions on the carbon surface, with 80% capacitance retention over 100 000 cycles in 1 M Li2SO4 and 75 000 cycles in 6 M KOH.


Scientific Reports | 2015

Peculiarity of two thermodynamically-stable morphologies and their impact on the efficiency of small molecule bulk heterojunction solar cells

Nuradhika Herath; Sanjib Das; Jong K. Keum; Jiahua Zhu; Rajeev Kumar; Ilia N. Ivanov; Bobby G. Sumpter; James F. Browning; Kai Xiao; Gong Gu; Pooran C. Joshi; Sean C. Smith; Valeria Lauter

Structural characteristics of the active layers in organic photovoltaic (OPV) devices play a critical role in charge generation, separation and transport. Here we report on morphology and structural control of p-DTS(FBTTh2)2:PC71BM films by means of thermal annealing and 1,8-diiodooctane (DIO) solvent additive processing, and correlate it to the device performance. By combining surface imaging with nanoscale depth-sensitive neutron reflectometry (NR) and X-ray diffraction, three-dimensional morphologies of the films are reconstituted with information extending length scales from nanometers to microns. DIO promotes the formation of a well-mixed donor-acceptor vertical phase morphology with a large population of small p-DTS(FBTTh2)2 nanocrystals arranged in an elongated domain network of the film, thereby enhancing the device performance. In contrast, films without DIO exhibit three-sublayer vertical phase morphology with phase separation in agglomerated domains. Our findings are supported by thermodynamic description based on the Flory-Huggins theory with quantitative evaluation of pairwise interaction parameters that explain the morphological changes resulting from thermal and solvent treatments. Our study reveals that vertical phase morphology of small-molecule based OPVs is significantly different from polymer-based systems. The significant enhancement of morphology and information obtained from theoretical modeling may aid in developing an optimized morphology to enhance device performance for OPVs.


Applied Physics Letters | 2016

In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material

Fei Ren; Robert D. Schmidt; Jong K. Keum; Bosen Qian; Eldon D. Case; Ken Littrell; Ke An

Introducing nanostructural second phases has proved to be an effective approach to reduce the lattice thermal conductivity and thus enhances the figure of merit for many thermoelectric materials. Studies of the formation and evolution of these second phases are essential to understanding material temperature dependent behaviors, improving thermal stabilities, as well as designing new materials. In this study, powder samples of the PbTe-PbS thermoelectric material were examined using in situ neutron diffraction and small angle neutron scattering (SANS) techniques between room temperature and elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size of the second phase. Neutron diffraction data showed that the as-milled powder was primarily a solid solution prior to heat treatment. During heating, a PbS second phase precipitated out of the PbTe matrix around 500 K, while re-dissolution started around 600 K. The second phase remained separated from the ...

Collaboration


Dive into the Jong K. Keum's collaboration.

Top Co-Authors

Avatar

James F. Browning

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jihua Chen

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kai Xiao

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David B. Geohegan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gabriel M. Veith

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Loïc Baggetto

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amit K. Naskar

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ilia N. Ivanov

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bin Yang

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adam J. Rondinone

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge