Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jong-Myong Kim is active.

Publication


Featured researches published by Jong-Myong Kim.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis

Ziqiang Zhu; Fengying An; Ying Feng; Pengpeng Li; Li Xue; Mu A; Zhiqiang Jiang; Jong-Myong Kim; Taiko Kim To; Wei Li; Xinyan Zhang; Qiang Yu; Zhi Dong; Wen-Qian Chen; Motoaki Seki; Jian-Min Zhou; Hongwei Guo

Jasmonate (JA) and ethylene (ET) are two major plant hormones that synergistically regulate plant development and tolerance to necrotrophic fungi. Both JA and ET induce the expression of several pathogenesis-related genes, while blocking either signaling pathway abolishes the induction of these genes by JA and ET alone or in combination. However, the molecular basis of JA/ET coaction and signaling interdependency is largely unknown. Here, we report that two Arabidopsis ET-stabilized transcription factors (EIN3 and EIL1) integrate ET and JA signaling in the regulation of gene expression, root development, and necrotrophic pathogen defense. Further studies reveal that JA enhances the transcriptional activity of EIN3/EIL1 by removal of JA-Zim domain (JAZ) proteins, which physically interact with and repress EIN3/EIL1. In addition, we find that JAZ proteins recruit an RPD3-type histone deacetylase (HDA6) as a corepressor that modulates histone acetylation, represses EIN3/EIL1-dependent transcription, and inhibits JA signaling. Our studies identify EIN3/EIL1 as a key integration node whose activation requires both JA and ET signaling, and illustrate transcriptional derepression as a common mechanism to integrate diverse signaling pathways in the regulation of plant development and defense.


Plant and Cell Physiology | 2008

Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana.

Jong-Myong Kim; Taiko Kim To; Junko Ishida; Taeko Morosawa; Makiko Kawashima; Akihiro Matsui; Tetsuro Toyoda; Hiroshi Kimura; Kazuo Shinozaki; Motoaki Seki

Post-translational modification of histone N-tails affects eukaryotic gene activity. In Arabidopsis, the histone modification level correlates with gene activation and repression in vernalization and flowering processes, but there is little information on changes in histone modification status and nucleosome structure under abiotic stresses. We determined the temporal and spatial changes in nucleosome occupancy and levels of H3K4me3, H3K9ac, H3K14ac, H3K23ac and H3K27ac in the histone H3 N-tail on the regions of four Arabidopsis drought stress-inducible genes, RD29A, RD29B, RD20 and At2g20880 [corrected], under drought stress conditions by chromatin immunoprecipitation analysis. We found two types of regulatory mechanisms of nucleosome occupancy function in the drought stress response. For RD29A and RD29B genes, nucleosome occupancy of promoter regions is low compared with that of coding regions, and no notable nucleosome loss occurs under drought stress. In contrast, nucleosome density is gradually decreased in response to drought stress on RD20 and At2g20880 [corrected] genes. Enrichments of H3K4me3 and H3K9ac correlate with gene activation in response to drought stress in all four genes. Interestingly, establishment of H3K4me3 occurs after accumulation of RNAPII on the coding regions of RD29A and At2g20880 [corrected]. Enrichment of H3K23ac and H3K27ac occurs in response to drought stress on the coding regions of RD29B, RD20 and At2g20880 [corrected], but not on the coding region of At2g20880 [corrected]. Our results indicate that histone modifications on the H3 N-tail are altered with gene activation on the coding regions of drought stress-responsive genes under drought stress conditions and that several patterns of nucleosome changes function in the drought stress response.


Plant Cell and Environment | 2010

Chromatin regulation functions in plant abiotic stress responses

Jong-Myong Kim; Taiko K. To; Tatsuya Nishioka; Motoaki Seki

Plants respond and adapt to drought, cold and high-salinity stress in order to survive. Molecular and genomic studies have revealed that many stress-inducible genes with various functions and signalling factors, such as transcription factors, protein kinases and protein phosphatases, are involved in the stress responses. Recent studies have revealed the coordination of the gene expression and chromatin regulation in response to the environmental stresses. Several histone modifications are dramatically altered on the stress-responsive gene regions under drought stress conditions. Several chromatin-related proteins such as histone modification enzymes, linker histone H1 and components of chromatin remodeling complex influence the gene regulation in the stress responses. This review briefly describes chromatin regulation in response to drought, cold and high-salinity stress.


Molecular Genetics and Genomics | 2011

Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression

Takumi Yoshida; Naohiko Ohama; Jun Nakajima; Satoshi Kidokoro; Junya Mizoi; Kazuo Nakashima; Kyonoshin Maruyama; Jong-Myong Kim; Motoaki Seki; Daisuke Todaka; Yuriko Osakabe; Yoh Sakuma; Friedrich Schöffl; Kazuo Shinozaki; Kazuko Yamaguchi-Shinozaki

Arabidopsis DREB2A is a key transcription factor of heat- and drought-responsive gene expression, and DREB2A expression is induced by these stresses. We analyzed the DREB2A promoter and found a heat shock element that functions as a cis-acting element in the heat shock (HS)-responsive expression of DREB2A. Among the 21 Arabidopsis heat shock factors, we chose 4 HsfA1-type proteins as candidate transcriptional activators (HsfA1a, HsfA1b, HsfA1d, and HsfA1e) based on transactivation activity and expression patterns. We generated multiple mutants and found that the HS-responsive expression of DREB2A disappeared in hsfa1a/b/d triple and hsfa1a/b/d/e quadruple mutants. Moreover, HS-responsive gene expression, including that of molecular chaperones and transcription factors, was globally and drastically impaired in the hsfa1a/b/d triple mutant, which exhibited greatly reduced tolerance to HS stress. HsfA1 protein accumulation in the nucleus was negatively regulated by their interactions with HSP90, and other factors potentially strongly activate the HsfA1 proteins under HS stress. The hsfa1a/b/d/e quadruple mutant showed severe growth retardation, and many genes were downregulated in this mutant even under non-stress conditions. Our study indicates that HsfA1a, HsfA1b, and HsfA1d function as main positive regulators in HS-responsive gene expression and four HsfA1-type proteins are important in gene expression for normal plant growth.


Frontiers in Plant Science | 2015

Chromatin changes in response to drought, salinity, heat, and cold stresses in plants.

Jong-Myong Kim; Taku Sasaki; Minoru Ueda; Kaori Sako; Motoaki Seki

Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.


PLOS Genetics | 2011

Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1.

Taiko Kim To; Jong-Myong Kim; Akihiro Matsui; Yukio Kurihara; Taeko Morosawa; Junko Ishida; Maho Tanaka; Takaho A. Endo; Tetsuji Kakutani; Tetsuro Toyoda; Hiroshi Kimura; Shigeyuki Yokoyama; Kazuo Shinozaki; Motoaki Seki

Heterochromatin silencing is pivotal for genome stability in eukaryotes. In Arabidopsis, a plant-specific mechanism called RNA–directed DNA methylation (RdDM) is involved in heterochromatin silencing. Histone deacetylase HDA6 has been identified as a component of such machineries; however, its endogenous targets and the silencing mechanisms have not been analyzed globally. In this study, we investigated the silencing mechanism mediated by HDA6. Genome-wide transcript profiling revealed that the loci silenced by HDA6 carried sequences corresponding to the RDR2-dependent 24-nt siRNAs, however their transcript levels were mostly unaffected in the rdr2 mutant. Strikingly, we observed significant overlap of genes silenced by HDA6 to those by the CG DNA methyltransferase MET1. Furthermore, regardless of dependence on RdDM pathway, HDA6 deficiency resulted in loss of heterochromatic epigenetic marks and aberrant enrichment for euchromatic marks at HDA6 direct targets, along with ectopic expression of these loci. Acetylation levels increased significantly in the hda6 mutant at all of the lysine residues in the H3 and H4 N-tails, except H4K16. Interestingly, we observed two different CG methylation statuses in the hda6 mutant. CG methylation was sustained in the hda6 mutant at some HDA6 target loci that were surrounded by flanking DNA–methylated regions. In contrast, complete loss of CG methylation occurred in the hda6 mutant at the HDA6 target loci that were isolated from flanking DNA methylation. Regardless of CG methylation status, CHG and CHH methylation were lost and transcriptional derepression occurred in the hda6 mutant. Furthermore, we show that HDA6 binds only to its target loci, not the flanking methylated DNA, indicating the profound target specificity of HDA6. We propose that HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1, possibly recruiting MET1 to specific loci, thus forming the foundation of silent chromatin structure for subsequent non-CG methylation.


Plant and Cell Physiology | 2012

Transition of Chromatin Status During the Process of Recovery from Drought Stress in Arabidopsis thaliana

Jong-Myong Kim; Taiko Kim To; Junko Ishida; Akihiro Matsui; Hiroshi Kimura; Motoaki Seki

Changes in chromatin status are correlated with gene regulation of biological processes such as development and stress responses in plants. In this study, we focused on the transition of chromatin status toward gene repression during the process of recovery from drought stress of drought-inducible genes (RD20, RD29A and AtGOLS2) and a rehydration-inducible gene (ProDH). In response to drought, RNA polymerase II was recruited on the drought-inducible genes and rapidly disappeared after rehydration, although mRNA levels of these genes were maintained to some degree after rehydration, suggesting that the transcriptional activities of these genes were rapidly inactivated by rehydration treatment. Histone H3K9ac was enriched by drought and rapidly removed from these regions by rehydration. In contrast, histone H3K4me3 was gradually decreased by rehydration but was maintained at low levels after rehydration, suggesting that H3K4me3 functions as an epigenetic mark of stress memory. These results show that the transcriptional activity and chromatin status are rapidly changed from an active to inactive mode during the recovery process. Our results demonstrate that histone modifications are correlated with the inactivation of drought-inducible genes during the recovery process by rehydration.


Biochemical and Biophysical Research Communications | 2011

Arabidopsis HDA6 is required for freezing tolerance

Taiko Kim To; Kentaro Nakaminami; Jong-Myong Kim; Taeko Morosawa; Junko Ishida; Maho Tanaka; Shigeyuki Yokoyama; Kazuo Shinozaki; Motoaki Seki

Many plants exhibit altered gene expression patterns in response to low nonfreezing temperatures and an increase in freezing tolerance in a phenomenon known as cold acclimation. Here we show, for the first time, that the histone deacetylase gene HDA6 is required for cold acclimation and freezing tolerance in Arabidopsis. HDA6 is transcriptionally upregulated during long-term cold treatment. Cold-treated hda6 mutants showed reduced freezing tolerance compared with the cold-treated wild-type plants. Freezing-caused electrolyte leakage increased in the cold-treated hda6 mutant. In contrast, the non-cold-treated hda6 mutants showed no significant difference in survivability and electrolyte leakage compared to wild-type plants. Transcriptome analysis identified the genes that showed aberrant expression in the hda6 mutant after cold acclimation. We conclude that HDA6 plays a critical role in regulating cold acclimation process that confers freezing resistance on Arabidopsis.


The Plant Cell | 2013

The Cold Signaling Attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Activates FLOWERING LOCUS C Transcription via Chromatin Remodeling under Short-Term Cold Stress in Arabidopsis

Jaehoon Jung; Ju-Hyung Park; Sangmin Lee; Taiko Kim To; Jong-Myong Kim; Motoaki Seki; Chung-Mo Park

Short-term cold stress delays flowering by activating the floral repressor FLOWERING LOCUS C (FLC). This study shows that the cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (HOS1) acts as a chromatin remodeling factor for FLC regulation under short-term cold stress by antagonizing the actions of FVE and its interacting partner histone deacetylase 6. Exposure to short-term cold stress delays flowering by activating the floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis thaliana. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (HOS1) negatively regulates cold responses. Notably, HOS1-deficient mutants exhibit early flowering, and FLC expression is suppressed in the mutants. However, it remains unknown how HOS1 regulates FLC expression. Here, we show that HOS1 induces FLC expression by antagonizing the actions of FVE and its interacting partner histone deacetylase 6 (HDA6) under short-term cold stress. HOS1 binds to FLC chromatin in an FVE-dependent manner, and FVE is essential for the HOS1-mediated activation of FLC transcription. HOS1 also interacts with HDA6 and inhibits the binding of HDA6 to FLC chromatin. Intermittent cold treatments induce FLC expression by activating HOS1, which attenuates the activity of HDA6 in silencing FLC chromatin, and the effects of intermittent cold are diminished in hos1 and fve mutants. These observations indicate that HOS1 acts as a chromatin remodeling factor for FLC regulation under short-term cold stress.


Plant and Cell Physiology | 2012

An Epigenetic Integrator: New Insights into Genome Regulation, Environmental Stress Responses and Developmental Controls by HISTONE DEACETYLASE 6

Jong-Myong Kim; Taiko Kim To; Motoaki Seki

Histone acetylation ranks with DNA methylation as one of major epigenetic modifications in eukaryotes. Deacetylation of histone N-terminal tails is intimately correlated with gene silencing and heterochromatin formation. In Arabidopsis, histone deacetylase 6 (HDA6) is a well-studied histone deacetylase that functions in gene silencing. Recently, it has been reported that HDA6 cooperates with DNA methylation on its direct target locus in the gene silencing mechanism. HDA6 has the multifaceted role in regulation of genome maintenance, development and environmental stress responses in plants. Elucidation of HDA6 function provides important information for understanding of epigenetic regulation in plants. In this review, we highlight recent progress in elucidating the HDA6-mediated gene silencing mechanisms and deciphering the biological function of HDA6.

Collaboration


Dive into the Jong-Myong Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Kimura

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge