Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jong Seto is active.

Publication


Featured researches published by Jong Seto.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Cooperative deformation of mineral and collagen in bone at the nanoscale

Himadri S. Gupta; Jong Seto; Wolfgang Wagermaier; Paul Zaslansky; Peter Boesecke; Peter Fratzl

In biomineralized tissues such as bone, the recurring structural motif at the supramolecular level is an anisotropic stiff inorganic component reinforcing the soft organic matrix. The high toughness and defect tolerance of natural biomineralized composites is believed to arise from these nanometer scale structural motifs. Specifically, load transfer in bone has been proposed to occur by a transfer of tensile strains between the stiff inorganic (mineral apatite) particles via shearing in the intervening soft organic (collagen) layers. This raises the question as to how and to what extent do the mineral particles and fibrils deform concurrently in response to tissue deformation. Here we show that both mineral nanoparticles and the enclosing mineralized fibril deform initially elastically, but to different degrees. Using in situ tensile testing with combined high brilliance synchrotron X-ray diffraction and scattering on the same sample, we show that tissue, fibrils, and mineral particles take up successively lower levels of strain, in a ratio of 12:5:2. The maximum strain seen in mineral nanoparticles (≈0.15–0.20%) can reach up to twice the fracture strain calculated for bulk apatite. The results are consistent with a staggered model of load transfer in bone matrix, exemplifying the hierarchical nature of bone deformation. We believe this process results in a mechanism of fibril–matrix decoupling for protecting the brittle mineral phase in bone, while effectively redistributing the strain energy within the bone tissue.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structure-property relationships of a biological mesocrystal in the adult sea urchin spine

Jong Seto; Yurong Ma; Sean A. Davis; Fiona C. Meldrum; Aurélien Gourrier; Yi-Yeoun Kim; Uwe Schilde; Michael Sztucki; Manfred Burghammer; Sergey Maltsev; Christian Jäger; Helmut Cölfen

Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature’s demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials.


Journal of Structural Biology | 2010

In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen

Himadri S. Gupta; Jong Seto; Stefanie Krauss; Peter Boesecke; Hazel R. C. Screen

Tendon is a hydrated multi-level fibre composite, in which time-dependent behaviour is well established. Studies indicate significant stress relaxation, considered important for optimising tissue stiffness. However, whilst this behaviour is well documented, the mechanisms associated with the response are largely unknown. This study investigates the sub-structural mechanisms occurring during stress relaxation at both the macro (fibre) and nano (fibril) levels of the tendon hierarchy. Stress relaxation followed a two-stage exponential behaviour, during which structural changes were visible at the fibre and fibril levels. Fibril relaxation and fibre sliding showed a double exponential response, while fibre sliding was clearly the largest contributor to relaxation. The amount of stress relaxation and sub-structural reorganisation increased with increasing load increments, but fibre sliding was consistently the largest contributor to stress relaxation. A simple model of tendon viscoelasticity at the fibril and fibre levels has been developed, capturing this behaviour by serially coupling a Voigt element (collagen fibril), with two Maxwell elements (non-collagenous matrix between fibrils and fibres). This multi-level analysis provides a first step towards understanding how sub-structural interactions contribute to viscoelastic behaviour. It indicates that nano- and micro-scale shearing are significant dissipative mechanisms, and the kinetics of relaxation follows a two-stage exponential decay, well fitted by serially coupled viscoelastic elements.


Journal of Structural Biology | 2011

The organization of the osteocyte network mirrors the extracellular matrix orientation in bone

Michael Kerschnitzki; Wolfgang Wagermaier; Paul Roschger; Jong Seto; Ron Shahar; Georg N. Duda; Stefan Mundlos; Peter Fratzl

Bone is a dynamic tissue that is continually undergoing a process of remodeling - an effect due to the interplay between bone resorption by osteoclasts and bone formation by osteoblasts. When new bone is deposited, some of the osteoblasts are embedded in the mineralizing collagen matrix and differentiate to osteocytes, forming a dense network throughout the whole bone tissue. Here, we investigate the extent to which the organization of the osteocyte network controls the collagen matrix arrangement found in various bone tissues. Several tissue types from equine, ovine and murine bone have been examined using confocal laser scanning microscopy as well as polarized light microscopy and back-scattered electron imaging. From comparing the spatial arrangements of unorganized and organized bone, we propose that the formation of a highly oriented collagen matrix requires an alignment of osteoblasts whereby a substrate layer provides a surface such that osteoblasts can align and, collectively, build new matrix. Without such a substrate, osteoblasts act isolated and only form matrices without long range order. Hence, we conclude that osteoblasts synthesize and utilize scaffold-like primary tissue as a guide for the deposition of highly ordered and mechanically competent bone tissue by a collective action of many cells.


Bone | 2009

Inhomogeneous fibril stretching in antler starts after macroscopic yielding: indication for a nanoscale toughening mechanism.

Stefanie Krauss; Peter Fratzl; Jong Seto; John D. Currey; José A. Estevez; Sérgio S. Funari; Himadri S. Gupta

Antler is a unique mineralized tissue, with extraordinary toughness as well as an ability to annually regenerate itself in its entirety. The high fracture resistance enables it to fulfill its biological function as a weapon and defensive guard during combats between deer stags in the rutting season. However, very little is quantitatively understood about the structural origin of the antlers high toughness. We used a unique combination of time-resolved synchrotron small angle X-ray diffraction together with tensile testing of antler cortical tissue under physiologically wet conditions. We measured the deformation at the nanoscale from changes in the meridional diffraction pattern during macroscopic stretch-to-failure tests. Our results show that on average fibrils are strained only half as much as the whole tissue and the fibril strain increases linearly with tissue strain, both during elastic and inelastic deformation. Most remarkably, following macroscopic yielding we observe a straining of some fibrils equal to the macroscopic tissue strain while others are hardly stretched at all, indicating an inhomogeneous fibrillar strain pattern at the nanoscale. This behavior is unlike what occurs in plexiform bovine bone and may explain the extreme toughness of antler compared to normal bone.


Microscopy and Microanalysis | 2014

Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM

Michael H. Nielsen; Dongsheng Li; Hengzhong Zhang; Shaul Aloni; T. Yong-Jin Han; Cathrine Frandsen; Jong Seto; Jillian F. Banfield; Helmut Cölfen; James J. De Yoreo

Recent ex situ observations of crystallization in both natural and synthetic systems indicate that the classical models of nucleation and growth are inaccurate. However, in situ observations that can provide direct evidence for alternative models have been lacking due to the limited temporal and spatial resolution of experimental techniques that can observe dynamic processes in a bulk solution. Here we report results from liquid cell transmission electron microscopy studies of nucleation and growth of Au, CaCO3, and iron oxide nanoparticles. We show how these in situ data can be used to obtain direct evidence for the mechanisms underlying nanoparticle crystallization as well as dynamic information that provide constraints on important energetic parameters not available through ex situ methods.


Biomacromolecules | 2011

Observations of Multiscale, Stress-Induced Changes of Collagen Orientation in Tendon by Polarized Raman Spectroscopy

Admir Masic; Luca Bertinetti; Roman Schuetz; Leonardo Galvis; Nadya Timofeeva; John W. C. Dunlop; Jong Seto; Markus A. Hartmann; Peter Fratzl

Collagen is a versatile structural molecule in nature and is used as a building block in many highly organized tissues, such as bone, skin, and cornea. The functionality and performance of these tissues are controlled by their hierarchical organization ranging from the molecular up to macroscopic length scales. In the present study, polarized Raman microspectroscopic and imaging analyses were used to elucidate collagen fibril orientation at various levels of structure in native rat tail tendon under mechanical load. In situ humidity-controlled uniaxial tensile tests have been performed concurrently with Raman confocal microscopy to evaluate strain-induced chemical and structural changes of collagen in tendon. The methodology is based on the sensitivity of specific Raman scattering bands (associated with distinct molecular vibrations, such as the amide I) to the orientation and the polarization direction of the incident laser light. Our results, based on the changing intensity of Raman lines as a function of orientation and polarization, support a model where the crimp and gap regions of collagen hierarchical structure are straightened at the tissue and molecular level, respectively. However, the lack of measurable changes in Raman peak positions throughout the whole range of strains investigated indicates that no significant changes of the collagen backbone occurs with tensing and suggests that deformation is rather redistributed through other levels of the hierarchical structure.


Zeitschrift Fur Kristallographie | 2012

The multiple effects of amino acids on the early stages of calcium carbonate crystallization

Andreas Picker; Matthias Kellermeier; Jong Seto; Denis Gebauer; Helmut Cölfen

Abstract Proteins have found their way into many of Nature’s structures due to their structural stability, diversity in function and composition, and ability to be regulated as well as be regulators themselves. In this study, we investigate the constitutive amino acids that make up some of these proteins which are involved in CaCO3 mineralization – either in nucleation, crystal growth, or inhibition processes. By assaying all 20 amino acids with vapor diffusion and in situ potentiometric titration, we have found specific amino acids having multiple effects on the early stages of CaCO3 crystallization. These same amino acids have been independently implicated as constituents in liquid-like precursors that form mineralized tissues, processes believed to be key effects of biomineralization proteins in several biological model systems.


Journal of Structural Biology | 2013

Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization

Ashit Rao; Jong Seto; John K. Berg; Stefan Kreft; Martin Scheffner; Helmut Cölfen

The larval spicule matrix protein SM50 is the most abundant occluded matrix protein present in the mineralized larval sea urchin spicule. Recent evidence implicates SM50 in the stabilization of amorphous calcium carbonate (ACC). Here, we investigate the molecular interactions of SM50 and CaCO3 by investigating the function of three major domains of SM50 as small ubiquitin-like modifier (SUMO) fusion proteins - a C-type lectin domain (CTL), a glycine rich region (GRR) and a proline rich region (PRR). Under various mineralization conditions, we find that SUMO-CTL is monomeric and influences CaCO3 mineralization, SUMO-GRR aggregates into large protein superstructures and SUMO-PRR modifies the early CaCO3 mineralization stages as well as growth. The combination of these mineralization and self-assembly properties of the major domains synergistically enable the full-length SM50 to fulfill functions of constructing the organic spicule matrix as well as performing necessary mineralization activities such as Ca(2+) ion recruitment and organization to allow for proper growth and development of the mineralized larval sea urchin spicule.


PLOS ONE | 2012

Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

Jong Seto; Himadri S. Gupta; Cora Schäfer; Stefanie Krauss; John W. C. Dunlop; Admir Masic; Michael Kerschnitzki; Paul Zaslansky; Peter Boesecke; Philip Catala-Lehnen; Thorsten Schinke; Peter Fratzl; Willi Jahnen-Dechent

The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

Collaboration


Dive into the Jong Seto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Himadri S. Gupta

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Boesecke

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Roschger

Shriners Hospitals for Children

View shared research outputs
Researchain Logo
Decentralizing Knowledge