Jongbum Jeon
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jongbum Jeon.
Frontiers in Plant Science | 2016
Ki-Tae Kim; Jongbum Jeon; Jae Young Choi; Kyeongchae Cheong; Hyeunjeong Song; Gobong Choi; Seogchan Kang; Yong-Hwan Lee
Fungal secretome consists of various functional groups of proteins, many of which participate in nutrient acquisition, self-protection, or manipulation of the environment and neighboring organisms. The least characterized component of the secretome is small secreted proteins (SSPs). Some SSPs have been reported to function as effectors, but most remain to be characterized. The composition of major secretome components, such as carbohydrate-active enzymes, proteases, lipases, and oxidoreductases, appear to reflect the lifestyle and ecological niche of individual species. We hypothesize that many SSPs participate in manipulating plants as effectors. Obligate biotrophs likely encode more and diverse effector-like SSPs to suppress host defense compared to necrotrophs, which generally use cell wall degrading enzymes and phytotoxins to kill hosts. Because different secretome prediction workflows have been used in different studies, available secretome data are difficult to integrate for comprehensive comparative studies to test this hypothesis. In this study, SSPs encoded by 136 fungal species were identified from data archived in Fungal Secretome Database (FSD) via a refined secretome workflow. Subsequently, compositions of SSPs and other secretome components were compared in light of taxa and lifestyles. Those species that are intimately associated with host cells, such as biotrophs and symbionts, usually have higher proportion of species-specific SSPs (SSSPs) than hemibiotrophs and necrotrophs, but the latter groups displayed higher proportions of secreted enzymes. Results from our study established a foundation for functional studies on SSPs and will also help understand genomic changes potentially underpinning different fungal lifestyles.
Nucleic Acids Research | 2013
Jaeyoung Choi; Kyeongchae Cheong; Kyongyong Jung; Jongbum Jeon; Gir-Won Lee; Seogchan Kang; Sangsoo Kim; Yin-Won Lee; Yong-Hwan Lee
In 2007, Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr/) was publicly open with 65 genomes corresponding to 58 fungal and Oomycete species. The CFGP provided six bioinformatics tools, including a novel tool entitled BLASTMatrix that enables search homologous genes to queries in multiple species simultaneously. CFGP also introduced Favorite, a personalized virtual space for data storage and analysis with these six tools. Since 2007, CFGP has grown to archive 283 genomes corresponding to 152 fungal and Oomycete species as well as 201 genomes that correspond to seven bacteria, 39 plants and 105 animals. In addition, the number of tools in Favorite increased to 27. The Taxonomy Browser of CFGP 2.0 allows users to interactively navigate through a large number of genomes according to their taxonomic positions. The user interface of BLASTMatrix was also improved to facilitate subsequent analyses of retrieved data. A newly developed genome browser, Seoul National University Genome Browser (SNUGB), was integrated into CFGP 2.0 to support graphical presentation of diverse genomic contexts. Based on the standardized genome warehouse of CFGP 2.0, several systematic platforms designed to support studies on selected gene families have been developed. Most of them are connected through Favorite to allow of sharing data across the platforms.
BMC Genomics | 2014
Jae Young Choi; Ki-Tae Kim; Jongbum Jeon; Jiayao Wu; Hyeunjeong Song; Fred O. Asiegbu; Yong-Hwan Lee
BackgroundRNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. The key components are believed to exist throughout eukaryotes; however, there is no systematic platform for archiving and dissecting these important gene families. In addition, few fungi have been studied to date, limiting our understanding of RNAi in fungi. Here we present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP.DescriptionTo identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. The domain profiles were searched using fungal, metazoan, and plant genomes, as well as bacterial and archaeal genomes. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. funRNA provides results from diverse bioinformatics programs and job submission forms for BLAST, BLASTMatrix, and ClustalW. Furthermore, sequence collections created in funRNA are synced with several gene family analysis portals and databases, offering further analysis opportunities.ConclusionsfunRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi.
BMC Genomics | 2013
Jae Young Choi; Ki-Tae Kim; Jongbum Jeon; Yong-Hwan Lee
BackgroundPlant cell wall-degrading enzymes (PCWDEs) play significant roles throughout the fungal life including acquisition of nutrients and decomposition of plant cell walls. In addition, many of PCWDEs are also utilized by biofuel and pulp industries. In order to develop a comparative genomics platform focused in fungal PCWDEs and provide a resource for evolutionary studies, Fungal PCWDE Database (FPDB) is constructed (http://pcwde.riceblast.snu.ac.kr/).ResultsIn order to archive fungal PCWDEs, 22 sequence profiles were constructed and searched on 328 genomes of fungi, Oomycetes, plants and animals. A total of 6,682 putative genes encoding PCWDEs were predicted, showing differential distribution by their life styles, host ranges and taxonomy. Genes known to be involved in fungal pathogenicity, including polygalacturonase (PG) and pectin lyase, were enriched in plant pathogens. Furthermore, crop pathogens had more PCWDEs than those of rot fungi, implying that the PCWDEs analysed in this study are more needed for invading plant hosts than wood-decaying processes. Evolutionary analysis of PGs in 34 selected genomes revealed that gene duplication and loss events were mainly driven by taxonomic divergence and partly contributed by those events in species-level, especially in plant pathogens.ConclusionsThe FPDB would provide a fungi-specialized genomics platform, a resource for evolutionary studies of PCWDE gene families and extended analysis option by implementing Favorite, which is a data exchange and analysis hub built in Comparative Fungal Genomics Platform (CFGP 2.0; http://cfgp.snu.ac.kr/).
DNA Research | 2015
Seungill Kim; Myungshin Kim; Yong-Min Kim; Seon-In Yeom; Kyeongchae Cheong; Ki-Tae Kim; Jongbum Jeon; Sunggil Kim; Do-Sun Kim; Seong-Han Sohn; Yong-Hwan Lee; Doil Choi
The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp.
Genome Biology | 2017
Seungill Kim; Ji-Eun Park; Seon-In Yeom; Yong-Min Kim; Eunyoung Seo; Ki-Tae Kim; Myungshin Kim; Je Min Lee; Kyeongchae Cheong; Hosub Shin; Saet-Byul Kim; Koeun Han; Jundae Lee; Minkyu Park; Hyun-Ah Lee; Hye-Young Lee; Youngsill Lee; Soohyun Oh; Joo Hyun Lee; Eunhye Choi; Eunbi Choi; So Eui Lee; Jongbum Jeon; Hyunbin Kim; Gobong Choi; Hyeunjeong Song; Junki Lee; Sang-Choon Lee; Jin-Kyung Kwon; Hea-Young Lee
BackgroundTransposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants.ResultsWe report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific.ConclusionsOur study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants.
Genomics data | 2017
Jaeyoung Choi; Gir-Won Lee; Ki-Tae Kim; Jongbum Jeon; Nicolas Détry; Hsiao-Che Kuo; Hui Sun; Fred O. Asiegbu; Yong-Hwan Lee
The causal agent of root and butt rot of conifer trees, Heterobasidion annosum, is widespread in boreal forests and economically responsible for annual loss of approximately 50 million euros to forest industries in Finland alone and much more at European level. In order to further understand the pathobiology of this fungus at the genome level, a Finnish isolate of H. annosum sensu stricto (isolate 03012) was sequenced and analyzed with the genome sequences of 23 white-rot and 13 brown-rot fungi. The draft genome assembly of H. annosum has a size of 31.01 Mb, containing 11,453 predicted genes. Whole genome alignment showed that 84.38% of H. annosum genome sequences were aligned with those of previously sequenced H. irregulare TC 32-1 counterparts. The result is further supported by the protein sequence clustering analysis which revealed that the two genomes share 6719 out of 8647 clusters. When sequencing reads of H. annosum were aligned against the genome sequences of H. irregulare, six single nucleotide polymorphisms were found in every 1 kb, on average. In addition, 98.68% of SNPs were found to be homo-variants, suggesting that the two species have long evolved from different niches. Gene family analysis revealed that most of the white-rot fungi investigated had more gene families involved in lignin degradation or modification, including laccases and peroxidase. Comparative analysis of the two Heterobasidion spp. as well as white-/brown-rot fungi would provide new insights for understanding the pathobiology of the conifer tree pathogen.
bioRxiv | 2018
Seungill Kim; Kyeongchae Cheong; Ji-Eun Park; Myungshin Kim; Jihyun Kim; Min-Ki Seo; Sun-Ho Kwon; Yong-Min Kim; Namjin Koo; Kwang-Soo Kim; Nuri Oh; Ki-Tae Kim; Jongbum Jeon; Hyunbin Kim; Yoon-Young Lee; Kee-Hoon Sohn; Honour C. McCann; Sang-Kyu Ye; Kyung-Soon Park; Yong-Hwan Lee; Doil Choi
Whole genome annotation errors that omit essential protein-coding genes hinder further research. We developed Target Gene Family Finder (TGFam-Finder), an optimal tool for structural annotation of protein-coding genes containing target domain(s) of interest in eukaryotic genomes. Large-scale re-annotation of 100 publicly available eukaryotic genomes led to the discovery of essential genes that were missed in previous annotations. An average of 117 (346%) and 148 (45%) additional FAR1 and NLR genes were newly identified in 50 plant genomes. Furthermore, 117 (47%) additional C2H2 zinc finger genes were detected in 50 animal genomes including human and mouse. Accuracy of the newly annotated genes was validated by RT-PCR and cDNA sequencing in human, mouse and rice. In the human genome, 26 newly annotated genes were identical with known functional genes. TGFam-Finder along with the new gene models provide an optimized platform for unbiased functional and comparative genomics and comprehensive evolutionary study in eukaryotes.
Scientific Data | 2018
Myungshin Kim; Seungill Kim; Jongbum Jeon; Ki-Tae Kim; Hyun-Ah Lee; Hye-Young Lee; Ji-Eun Park; Eunyoung Seo; Saet-Byul Kim; Seon-In Yeom; Yong-Hwan Lee; Doil Choi
Hot pepper (Capsicum annuum) is one of the most consumed vegetable crops in the world and useful to human as it has many nutritional and medicinal values. Genomic resources of pepper are publically available since the pepper genomes have been completed and massive data such as transcriptomes have been deposited. Nevertheless, global transcriptome profiling is needed to identify molecular mechanisms related to agronomic traits in pepper, but limited analyses are published. Here, we report the comprehensive analysis of pepper transcriptomes during fruit ripening and pathogen infection. For the ripening, transcriptome data were obtained from placenta and pericarp at seven developmental stages. To reveal global transcriptomic landscapes during infection, leaves at six time points post-infection by one of three pathogens (Phytophthora infestans, Pepper mottle virus, and Tobacco mosaic virus P0 strain) were profiled. The massive parallel transcriptome profiling in this study will serve as a valuable resource for detection of molecular networks of fruit development and disease resistance in Capsicum annuum.
Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017
Jik Lee; Y Amare; Tyler Anderson; D Angelaszek; N Anthony; K. Cheryian; G.H. Choi; M. Copley; S. Coutu; Laurent Derome; Ludo Eraud; L Hagenau; J-P. Han; H.G. Huh; Y.S. Hwang; H.J. Hyun; S. Im; H. B. Jeon; Jongbum Jeon; S. Jeong; S. C. Kang; H. G. Kim; K. T. Kim; M. H. Kim; H.W. Lee; Min Hyun Lee; J Liang; J. T. Link; L. Lu; L. Lutz
The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) is a space-borne mission designed for the precision measurement of the energy and elemental composition of cosmic rays. It is scheduled to be launched and installed on the ISS in August 2017. The Silicon Charge Detector (SCD), placed at the top of the ISS-CREAM payload, consists of 4 layers. Each layer has 2688 silicon pixels and associated electronics arranged in such a fashion that its active detection area of 78 x 74 cm2 is free of any dead area. The foremost goal of the SCD is to efficiently and precisely measure the charge of cosmic rays passing through it. The 4-layer configuration was chosen to achieve the best precision in measuring the charge of cosmic rays within the constraints on the mass, volume and power allotted to it. The amount of material used for its support structure was minimized as well to reduce the chance of interactions of the cosmic ray within the structure. Given the placement of the SCD, its 4-layer configuration and the minimal amount of material in the cosmic-ray trajectory, the SCD is designed to measure the charge of cosmic rays ranging from protons to iron nuclei with excellent detection efficiency and charge resolution. We present the design and fabrication of the SCD. It successfully underwent space environment tests including vibration and thermal-vacuum qualification. We present the performance of the SCD during these tests, as well as its charge-measurement performance on the ground using cosmic muons and heavy ions in CERN beam tests.