Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonghyeon Shin is active.

Publication


Featured researches published by Jonghyeon Shin.


Science | 2016

Genetic circuit design automation

Alec A. K. Nielsen; Bryan S. Der; Jonghyeon Shin; Prashant Vaidyanathan; Vanya Paralanov; Elizabeth A. Strychalski; David J. Ross; Douglas Densmore; Christopher A. Voigt

Programming circuitry for synthetic biology As synthetic biology techniques become more powerful, researchers are anticipating a future in which the design of biological circuits will be similar to the design of integrated circuits in electronics. Nielsen et al. describe what is essentially a programming language to design computational circuits in living cells. The circuits generated on plasmids expressed in Escherichia coli required careful insulation from their genetic context, but primarily functioned as specified. The circuits could, for example, regulate cellular functions in response to multiple environmental signals. Such a strategy can facilitate the development of more complex circuits by genetic engineering. Science, this issue p. 10.1126/science.aac7341 A programming language is devised for biological regulatory circuits. INTRODUCTION Cells respond to their environment, make decisions, build structures, and coordinate tasks. Underlying these processes are computational operations performed by networks of regulatory proteins that integrate signals and control the timing of gene expression. Harnessing this capability is critical for biotechnology projects that require decision-making, control, sensing, or spatial organization. It has been shown that cells can be programmed using synthetic genetic circuits composed of regulators organized to generate a desired operation. However, the construction of even simple circuits is time-intensive and unreliable. RATIONALE Electronic design automation (EDA) was developed to aid engineers in the design of semiconductor-based electronics. In an effort to accelerate genetic circuit design, we applied principles from EDA to enable increased circuit complexity and to simplify the incorporation of synthetic gene regulation into genetic engineering projects. We used the hardware description language Verilog to enable a user to describe a circuit function. The user also specifies the sensors, actuators, and “user constraints file” (UCF), which defines the organism, gate technology, and valid operating conditions. Cello (www.cellocad.org) uses this information to automatically design a DNA sequence encoding the desired circuit. This is done via a set of algorithms that parse the Verilog text, create the circuit diagram, assign gates, balance constraints to build the DNA, and simulate performance. RESULTS Cello designs circuits by drawing upon a library of Boolean logic gates. Here, the gate technology consists of NOT/NOR logic based on repressors. Gate connection is simplified by defining the input and output signals as RNA polymerase (RNAP) fluxes. We found that the gates need to be insulated from their genetic context to function reliably in the context of different circuits. Each gate is isolated using strong terminators to block RNAP leakage, and input interchangeability is improved using ribozymes and promoter spacers. These parts are varied for each gate to avoid breakage due to recombination. Measuring the load of each gate and incorporating this into the optimization algorithms further reduces evolutionary pressure. Cello was applied to the design of 60 circuits for Escherichia coli, where the circuit function was specified using Verilog code and transformed to a DNA sequence. The DNA sequences were built as specified with no additional tuning, requiring 880,000 base pairs of DNA assembly. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts). Across all circuits, 92% of the 412 output states functioned as predicted. CONCLUSION Our work constitutes a hardware description language for programming living cells. This required the co-development of design algorithms with gates that are sufficiently simple and robust to be connected by automated algorithms. We demonstrate that engineering principles can be applied to identify and suppress errors that complicate the compositions of larger systems. This approach leads to highly repetitive and modular genetics, in stark contrast to the encoding of natural regulatory networks. The use of a hardware-independent language and the creation of additional UCFs will allow a single design to be transformed into DNA for different organisms, genetic endpoints, operating conditions, and gate technologies. Genetic programming using Cello. A user specifies the desired circuit function in Verilog code, and this is transformed into a DNA sequence. An example circuit is shown (0xF6); red and blue curves are predicted output states for populations of cells, and solid black distributions are experimental flow cytometry data. The outputs are shown for all combinations of sensor states; plus and minus signs indicate the presence or absence of input signal. RBS, ribosome binding site; RPU, relative promoter unit; YFP, yellow fluorescent protein. Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits for Escherichia coli (880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.


ACS Synthetic Biology | 2012

An E. coli Cell-Free Expression Toolbox: Application to Synthetic Gene Circuits and Artificial Cells

Jonghyeon Shin; Vincent Noireaux

Cell-free protein synthesis is becoming a powerful technique to construct and to study complex informational processes in vitro. Engineering synthetic gene circuits in a test tube, however, is seriously limited by the transcription repertoire of modern cell-free systems, composed of only a few bacteriophage regulatory elements. Here, we report the construction and the phenomenological characterization of synthetic gene circuits engineered with a cell-free expression toolbox that works with the seven E. coli sigma factors. The E. coli endogenous holoenzyme E(70) is used as the primary transcription machinery. Elementary circuit motifs, such as multiple stage cascades, AND gate and negative feedback loops are constructed with the six other sigma factors, two bacteriophage RNA polymerases, and a set of repressors. The circuit dynamics reveal the importance of the global mRNA turnover rate and of passive competition-induced transcriptional regulation. Cell-free reactions can be carried out over long periods of time with a small-scale dialysis reactor or in phospholipid vesicles, an artificial cell system. This toolbox is a unique platform to study complex transcription/translation-based biochemical systems in vitro.


Journal of Biological Engineering | 2010

Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70

Jonghyeon Shin; Vincent Noireaux

BackgroundEscherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been optimized to work with bacteriophage RNA polymerases, which put significant restrictions to engineer processes related to biological information. The development of efficient cell-free systems with broader transcription capabilities is required to study complex informational processes in vitro.ResultsIn this work, an efficient cell-free expression system that uses the endogenous E. coli RNA polymerase only and sigma factor 70 for transcription was prepared. Approximately 0.75 mg/ml of Firefly luciferase and enhanced green fluorescent protein were produced in batch mode. A plasmid was optimized with different regulatory parts to increase the expression. In addition, a new eGFP was engineered that is more translatable in cell-free systems than the original eGFP. The protein production was characterized with three different adenosine triphosphate (ATP) regeneration systems: creatine phosphate (CP), phosphoenolpyruvate (PEP), and 3-phosphoglyceric acid (3-PGA). The maximum protein production was obtained with 3-PGA. Preparation of the crude extract was streamlined to a simple routine procedure that takes 12 hours including cell culture.ConclusionsAlthough it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems. The E. coli transcription provides much more possibilities to engineer informational processes in vitro. Many E. coli promoters/operators specific to sigma factor 70 are available that form a broad library of regulatory parts. In this work, cell-free expression is developed as a toolbox to design and to study synthetic gene circuits in vitro.


ACS Synthetic Biology | 2012

Assembly of MreB Filaments on Liposome Membranes: A Synthetic Biology Approach

Yusuke T. Maeda; Tomoyoshi Nakadai; Jonghyeon Shin; Kunihiro Uryu; Vincent Noireaux; Albert Libchaber

The physical interaction between the cytoskeleton and the cell membrane is essential in defining the morphology of living organisms. In this study, we use a synthetic approach to polymerize bacterial MreB filaments inside phospholipid vesicles. When the proteins MreB and MreC are expressed inside the liposomes, the MreB cytoskeleton structure develops at the inner membrane. Furthermore, when purified MreB is used inside the liposomes, MreB filaments form a 4-10 μm rigid bundle structure and deform the lipid vesicles in physical contact with the vesicle inner membrane. These results indicate that the fibrillation of MreB filaments can take place either in close proximity of deformable lipid membrane or in the presence of associated protein. Our finding might be relevant for the self-assembly of cytoskeleton filaments toward the construction of artificial cell systems.


ACS Synthetic Biology | 2012

Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction.

Jonghyeon Shin; Paul J. Jardine; Vincent Noireaux

The synthesis of living entities in the laboratory is a standing challenge that calls for innovative approaches. Using a cell-free transcription-translation system as a molecular programming platform, we show that the bacteriophage T7, encoded by a 40 kbp DNA program composed of about 60 genes, can be entirely synthesized from its genomic DNA in a test tube reaction. More than a billion infectious bacteriophages T7 per milliliter of reaction are produced after a few hours of incubation. The replication of the genomic DNA occurs concurrently with phage gene expression, protein synthesis, and viral assembly. The demonstration that genome-sized viral DNA can be expressed in a test tube, recapitulating the entire chain of information processing including the replication of the DNA instructions, opens new possibilities to program and to study complex biochemical systems in vitro.


Journal of Biological Engineering | 2010

Study of messenger RNA inactivation and protein degradation in an Escherichia coli cell-free expression system.

Jonghyeon Shin; Vincent Noireaux

BackgroundA large amount of recombinant proteins can be synthesized in a few hours with Escherichia coli cell-free expression systems based on bacteriophage transcription. These cytoplasmic extracts are used in many applications that require large-scale protein production such as proteomics and high throughput techniques. In recent years, cell-free systems have also been used to engineer complex informational processes. These works, however, have been limited by the current available cell-free systems, which are not well adapted to these types of studies. In particular, no method has been proposed to increase the mRNA inactivation rate and the protein degradation rate in cell-free reactions. The construction of in vitro informational processes with interesting dynamics requires a balance between mRNA and protein synthesis (the source), and mRNA inactivation and protein degradation (the sink).ResultsTwo quantitative studies are presented to characterize and to increase the global mRNA inactivation rate, and to accelerate the degradation of the synthesized proteins in an E. coli cell-free expression system driven by the endogenous RNA polymerase and sigma factor 70. The E. coli mRNA interferase MazF was used to increase and to adjust the mRNA inactivation rate of the Firefly luciferase (Luc) and of the enhanced green fluorescent protein (eGFP). Peptide tags specific to the endogenous E. coli AAA + proteases were used to induce and to adjust the protein degradation rate of eGFP. Messenger RNA inactivation rate, protein degradation rate, maturation time of Luc and eGFP were measured.ConclusionsThe global mRNA turnover and the protein degradation rate can be accelerated and tuned in a biologically relevant range in a cell-free reaction with quantitative procedures easy to implement. These features broaden the capabilities of cell-free systems with a better control of gene expression. This cell-free extract could find some applications in new research areas such as in vitro synthetic biology and systems biology where engineering informational processes requires a quantitative control of mRNA inactivation and protein degradation.


Biochimica et Biophysica Acta | 2011

α-Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression.

Jerome Chalmeau; Nadezda Monina; Jonghyeon Shin; Christophe Vieu; Vincent Noireaux

Cell-free protein synthesis is becoming a serious alternative to cell-based protein expression. Cell-free systems can deliver large amounts of cytoplasmic recombinant proteins after a few hours of incubation. Recent studies have shown that membrane proteins can be also expressed in cell-free reactions and directly inserted into phospholipid membranes. In this work, we present a quantitative method to study in real time the concurrent cell-free expression and insertion of membrane proteins into phospholipid bilayers. The pore-forming protein α-hemolysin, fused to the reporter protein eGFP, was used as a model of membrane protein. Cell-free expression of the toxin in solution and inside large synthetic phospholipid vesicles was measured by fluorometry and fluorescence microscopy respectively. A quartz crystal microbalance with dissipation was used to characterize the interaction of the protein with a supported phospholipid bilayer. The cell-free reaction was directly incubated onto the bilayer inside the microbalance chamber while the frequency and the dissipation signals were monitored. The presence of pores in the phospholipid bilayer was confirmed by atomic force microscopy. A model is presented which describes the kinetics of adsorption of the expressed protein on the phospholipid bilayer. The combination of cell-free expression, fluorescence microscopy and quartz crystal microbalance-dissipation is a new quantitative approach to study the interaction of membrane proteins with phospholipid bilayers.


Biophysical Journal | 2004

Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials

Megan T. Valentine; Zachary E. Perlman; Margaret L. Gardel; Jonghyeon Shin; Paul Matsudaira; Timothy J. Mitchison; David A. Weitz


Journal of Visualized Experiments | 2013

Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology

Zachary Z. Sun; Clarmyra A. Hayes; Jonghyeon Shin; Filippo Caschera; Richard M. Murray; Vincent Noireaux


Physical Review Letters | 2011

Coarse-Grained Dynamics of Protein Synthesis in a Cell-Free System

Eyal Karzbrun; Jonghyeon Shin; Roy Bar-Ziv; Vincent Noireaux

Collaboration


Dive into the Jonghyeon Shin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alec A. K. Nielsen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bryan S. Der

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Voigt

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David J. Ross

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth A. Strychalski

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanya Paralanov

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge