Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jongwon Lim is active.

Publication


Featured researches published by Jongwon Lim.


Journal of Medicinal Chemistry | 2011

Discovery of 1-Amino-5H-pyrido[4,3-b]indol-4-carboxamide Inhibitors of Janus Kinase 2 (JAK2) for the Treatment of Myeloproliferative Disorders

Jongwon Lim; Brandon M. Taoka; Ryan D. Otte; Kerrie Spencer; Christopher J. Dinsmore; Michael D. Altman; Grace Chan; Craig Rosenstein; Sujata Sharma; Hua-Poo Su; Alexander A. Szewczak; Lin Xu; Hong Yin; Joan Zugay-Murphy; C. Gary Marshall; Jonathan R. Young

The JAK-STAT pathway mediates signaling by cytokines, which control survival, proliferation, and differentiation of a variety of cells. In recent years, a single point mutation (V617F) in the tyrosine kinase JAK2 was found to be present with a high incidence in myeloproliferative disorders (MPDs). This mutation led to hyperactivation of JAK2, cytokine-independent signaling, and subsequent activation of downstream signaling networks. The genetic, biological, and physiological evidence suggests that JAK2 inhibitors could be effective in treating MPDs. De novo design efforts of new scaffolds identified 1-amino-5H-pyrido[4,3-b]indol-4-carboxamides as a new viable lead series. Subsequent optimization of cell potency, metabolic stability, and off-target activities of the leads led to the discovery of 7-(2-aminopyrimidin-5-yl)-1-{[(1R)-1-cyclopropyl-2,2,2-trifluoroethyl]amino}-5H-pyrido[4,3-b]indole-4-carboxamide (65). Compound 65 is a potent, orally active inhibitor of JAK2 with excellent selectivity, PK profile, and in vivo efficacy in animal models.


Journal of Medicinal Chemistry | 2011

Discovery of a 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one (MK-2461) inhibitor of c-Met kinase for the treatment of cancer.

Jason D. Katz; James P. Jewell; David J. Guerin; Jongwon Lim; Christopher J. Dinsmore; Sujal V. Deshmukh; Bo-Sheng Pan; C. Gary Marshall; Wei Lu; Michael D. Altman; William K. Dahlberg; Lenora Davis; Danielle Falcone; Ana E. Gabarda; Gaozhen Hang; Harold Hatch; Rachael Holmes; Kaiko Kunii; Kevin J. Lumb; Bart Lutterbach; Robert J. Mathvink; Naim Nazef; Sangita B. Patel; Xianlu Qu; John Reilly; Keith Rickert; Craig Rosenstein; Stephen M. Soisson; Kerrie Spencer; Alexander A. Szewczak

c-Met is a transmembrane tyrosine kinase that mediates activation of several signaling pathways implicated in aggressive cancer phenotypes. In recent years, research into this area has highlighted c-Met as an attractive cancer drug target, triggering a number of approaches to disrupt aberrant c-Met signaling. Screening efforts identified a unique class of 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one kinase inhibitors, exemplified by 1. Subsequent SAR studies led to the development of 81 (MK-2461), a potent inhibitor of c-Met that was efficacious in preclinical animal models of tumor suppression. In addition, biochemical studies and X-ray analysis have revealed that this unique class of kinase inhibitors binds preferentially to the activated (phosphorylated) form of the kinase. This report details the development of 81 and provides a description of its unique biochemical properties.


ACS Medicinal Chemistry Letters | 2015

Discovery of 5-Amino-N-(1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide Inhibitors of IRAK4.

Jongwon Lim; Michael D. Altman; James R. Baker; Jason Brubaker; Hongmin Chen; Yiping Chen; Thierry O. Fischmann; Craig R. Gibeau; Melanie A. Kleinschek; Erica Leccese; Charles A. Lesburg; John Maclean; Lily Y. Moy; Erin F. Mulrooney; Jeremy Presland; Larissa Rakhilina; Graham F. Smith; Dietrich Steinhuebel; Ruojing Yang

Interleukin-1 receptor associated kinase 4 (IRAK4) is an essential signal transducer downstream of the IL-1R and TLR superfamily, and selective inhibition of the kinase activity of the protein represents an attractive target for the treatment of inflammatory diseases. A series of 5-amino-N-(1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamides was developed via sequential modifications to the 5-position of the pyrazolopyrimidine ring and the 3-position of the pyrazole ring. Replacement of substituents responsible for poor permeability and improvement of physical properties guided by cLogD led to the identification of IRAK4 inhibitors with excellent potency, kinase selectivity, and pharmacokinetic properties suitable for oral dosing.


Molecular Cancer Research | 2014

Evaluating TBK1 as a Therapeutic Target in Cancers with Activated IRF3

Asli Muvaffak; Qi Pan; Haiyan Yan; Rafael Fernandez; Jongwon Lim; Brian Dolinski; Thi Nguyen; Peter Strack; Stephen Wu; Rossana Chung; Weiqun Zhang; Chris Hulton; Steven Ripley; Heather Hirsch; Kumiko Nagashima; Kwok-Kin Wong; Pasi A. Jänne; Cynthia Seidel-Dugan; Leigh Zawel; Paul Kirschmeier; Richard E. Middleton; Erick J. Morris; Yan Wang

TBK1 (TANK-binding kinase 1) is a noncanonical IκB protein kinase that phosphorylates and activates downstream targets such as IRF3 and c-Rel and, mediates NF-κB activation in cancer. Previous reports demonstrated synthetic lethality of TBK1 with mutant KRAS in non–small cell lung cancer (NSCLC); thus, TBK1 could be a novel target for treatment of KRAS-mutant NSCLC. Here, the effect of TBK1 on proliferation in a panel of cancer cells by both genetic and pharmacologic approaches was evaluated. In KRAS-mutant cancer cells, reduction of TBK1 activity by knockdown or treatment with TBK1 inhibitors did not correlate with reduced proliferation in a two-dimensional viability assay. Verification of target engagement via reduced phosphorylation of S386 of IRF3 (pIRF3S386) was difficult to assess in NSCLC cells due to low protein expression. However, several cell lines were identified with high pIRF3S386 levels after screening a large panel of cell lines, many of which also harbor KRAS mutations. Specifically, a large subset of KRAS-mutant pancreatic cancer cell lines was uncovered with high constitutive pIRF3S386 levels, which correlated with high levels of phosphorylated S172 of TBK1 (pTBK1S172). Finally, TBK1 inhibitors dose-dependently inhibited pIRF3S386 in these cell lines, but this did not correlate with inhibition of cell growth. Taken together, these data demonstrate that the regulation of pathways important for cell proliferation in some NSCLC, pancreatic, and colorectal cell lines is not solely dependent on TBK1 activity. Implications: TBK1 has therapeutic potential under certain contexts and phosphorylation of its downstream target IRF3 is a biomarker of TBK1 activity. Visual Overview: http://mcr.aacrjournals.org/content/12/7/1055/F1.large.jpg. Mol Cancer Res; 12(7); 1055–66. ©2014 AACR. Visual Overview


PLOS ONE | 2012

Efficacious Intermittent Dosing of a Novel JAK2 Inhibitor in Mouse Models of Polycythemia Vera

Manfred Kraus; Yuxun Wang; Dan Aleksandrowicz; Eric Bachman; Alexander A. Szewczak; Deborah Walker; Lin Xu; Melaney Bouthillette; Kaleen M. Childers; Brian Dolinski; Andrew M. Haidle; Johnny Kopinja; Linda Lee; Jongwon Lim; Kevin D. Little; Yanhong Ma; Anjili Mathur; Jan-Rung Mo; Erin O’Hare; Ryan D. Otte; Brandon M. Taoka; Wenxian Wang; Hong Yin; Anna A. Zabierek; Weisheng Zhang; Shuxia Zhao; Joe Zhu; Jonathan R. Young; C. Gary Marshall

A high percentage of patients with the myeloproliferative disorder polycythemia vera (PV) harbor a Val617→Phe activating mutation in the Janus kinase 2 (JAK2) gene, and both cell culture and mouse models have established a functional role for this mutation in the development of this disease. We describe the properties of MRLB-11055, a highly potent inhibitor of both the WT and V617F forms of JAK2, that has therapeutic efficacy in erythropoietin (EPO)-driven and JAK2V617F-driven mouse models of PV. In cultured cells, MRLB-11055 blocked proliferation and induced apoptosis in a manner consistent with JAK2 pathway inhibition. MRLB-11055 effectively prevented EPO-induced STAT5 activation in the peripheral blood of acutely dosed mice, and could prevent EPO-induced splenomegaly and erythrocytosis in chronically dosed mice. In a bone marrow reconstituted JAK2V617F-luciferase murine PV model, MRLB-11055 rapidly reduced the burden of JAK2V617F-expressing cells from both the spleen and the bone marrow. Using real-time in vivo imaging, we examined the kinetics of disease regression and resurgence, enabling the development of an intermittent dosing schedule that achieved significant reductions in both erythroid and myeloid populations with minimal impact on lymphoid cells. Our studies provide a rationale for the use of non-continuous treatment to provide optimal therapy for PV patients.


Journal of Medicinal Chemistry | 2016

Discovery of 1-(1H-Pyrazolo[4,3-c]pyridin-6-yl)urea Inhibitors of Extracellular Signal-Regulated Kinase (ERK) for the Treatment of Cancers

Jongwon Lim; Elizabeth Helen Kelley; Joey L. Methot; Hua Zhou; Alessia Petrocchi; Hongmin Chen; Susan E. Hill; Marlene C. Hinton; Alan Hruza; Joon Jung; John Maclean; My Mansueto; George N. Naumov; Ulrike Philippar; Shruti Raut; Peter Spacciapoli; Dongyu Sun; Phieng Siliphaivanh

The ERK/MAPK pathway plays a central role in the regulation of critical cellular processes and is activated in more than 30% of human cancers. Specific BRAF and MEK inhibitors have shown clinical efficacy in patients for the treatment of BRAF-mutant melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the ERK signal pathway. Acquired resistance to these agents has led to greater interest in ERK, a downstream target of the MAPK pathway. De novo design efforts of a novel scaffold derived from SCH772984 by employing hydrogen bond interactions specific for ERK in the binding pocket identified 1-(1H-pyrazolo[4,3-c]pyridin-6-yl)ureas as a viable lead series. Sequential SAR studies led to the identification of highly potent and selective ERK inhibitors with low molecular weight and high LE. Compound 21 exhibited potent target engagement and strong tumor regression in the BRAF(V600E) xenograft model.


Bioorganic & Medicinal Chemistry Letters | 2015

Identification of N-(1H-pyrazol-4-yl)carboxamide inhibitors of interleukin-1 receptor associated kinase 4: Bicyclic core modifications

Jongwon Lim; Michael D. Altman; James A. Baker; Jason Brubaker; Hongmin Chen; Yiping Chen; Melanie A. Kleinschek; Chaomin Li; Duan Liu; John Maclean; Erin F. Mulrooney; Larissa Rakhilina; Graham F. Smith; Ruojing Yang

IRAK4 plays a critical role in the IL-1R and TLR signalling, and selective inhibition of the kinase activity of the protein represents an attractive target for the treatment of inflammatory diseases. A series of permeable N-(1H-pyrazol-4-yl)carboxamides was developed by introducing lipophilic bicyclic cores in place of the polar pyrazolopyrimidine core of 5-amino-N-(1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamides. Replacement of the pyrazolo[1,5-a]pyrimidine core with the pyrrolo[2,1-f][1,2,4]triazine, the pyrrolo[1,2-b]pyridazine, and thieno[2,3-b]pyrazine cores guided by cLogD led to the identification of highly permeable IRAK4 inhibitors with excellent potency and kinase selectivity.


Bioorganic & Medicinal Chemistry Letters | 2017

Identification of quinazoline based inhibitors of IRAK4 for the treatment of inflammation.

Graham F. Smith; Michael D. Altman; Brian M. Andresen; James A. Baker; Jason Brubaker; Hongmin Chen; Yiping Chen; Matthew Lloyd Childers; Anthony Donofrio; Heidi Ferguson; Christian Fischer; Thierry O. Fischmann; Craig R. Gibeau; Alexander Hicks; Sue Jin; Sam Kattar; Melanie A. Kleinschek; Erica Leccese; Charles A. Lesburg; Chaomin Li; Jongwon Lim; Duan Liu; John Maclean; Faruk Mansoor; Lilly Y. Moy; Erin F. Mulrooney; Antoaneta S. Necheva; Larissa Rakhilina; Ruojing Yang; Luis Torres

Interleukin-1 receptor associated kinase 4 (IRAK4) has been implicated in IL-1R and TLR based signaling. Therefore selective inhibition of the kinase activity of this protein represents an attractive target for the treatment of inflammatory diseases. Medicinal chemistry optimization of high throughput screening (HTS) hits with the help of structure based drug design led to the identification of orally-bioavailable quinazoline based IRAK4 inhibitors with excellent pharmacokinetic profile and kinase selectivity. These highly selective IRAK4 compounds show activity in vivo via oral dosing in a TLR7 driven model of inflammation.


Archive | 2010

Aminopyrimidines as syk inhibitors

Michael D. Altman; Brian M. Andresen; Kenneth L. Arrington; Sathesh Bhat; Jason Burch; Kaleen Konrad Childers; Bernard Côté; Maria Emilia Di Francesco; Anthony Donofrio; Kristina Dupont-Gaudet; John Michael Ellis; Christian Fischer; Jean-François Fournier; Jacques Yves Gauthier; Jonathan Grimm; Daniel Guay; David J. Guerin; Andrew M. Haidle; Solomon Kattar; Sandra Lee Knowles; Chaomin Li; Jongwon Lim; Michelle R. Machacek; Matthew L. Maddess; Alan B. Northrup; Brendan M. O'boyle; Ryan D. Otte; Alessia Petrocchi; Michael H. Reutershan; Joel Robichaud


Archive | 2009

Compounds that are erk inhibitors

Kevin J. Wilson; David J. Witter; Phieng Siliphaivanh; Kathryn Lipford; David L. Sloman; Danielle Falcone; Brendan M. O'boyle; Umar Faruk Mansoor; Jongwon Lim; Joey L. Methot; Christopher W. Boyce; Lei Chen; Matthew H. Daniels; Salem Fevrier; Xianhai Huang; Ravi Kurukulasuriya; Ling Tong; Wei Zhou; Joseph A. Kozlowski; Milana Maletic; Bidhan A. Shinkre; Jayanth Thiruvellore Thatai; Raman K. Bakshi; Ganesh Babu Karunakaran

Collaboration


Dive into the Jongwon Lim's collaboration.

Researchain Logo
Decentralizing Knowledge