Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonine D. Figueroa is active.

Publication


Featured researches published by Jonine D. Figueroa.


PLOS ONE | 2008

Gene Expression Signature of Cigarette Smoking and Its Role in Lung Adenocarcinoma Development and Survival

Maria Teresa Landi; Tatiana Dracheva; Melissa Rotunno; Jonine D. Figueroa; Huaitian Liu; Abhijit Dasgupta; Felecia Mann; Junya Fukuoka; Megan Hames; Andrew W. Bergen; Sharon E. Murphy; Ping Yang; Angela Cecilia Pesatori; Dario Consonni; Pier Alberto Bertazzi; Sholom Wacholder; Joanna H. Shih; Neil E. Caporaso; Jin Jen

Background Tobacco smoking is responsible for over 90% of lung cancer cases, and yet the precise molecular alterations induced by smoking in lung that develop into cancer and impact survival have remained obscure. Methodology/Principal Findings We performed gene expression analysis using HG-U133A Affymetrix chips on 135 fresh frozen tissue samples of adenocarcinoma and paired noninvolved lung tissue from current, former and never smokers, with biochemically validated smoking information. ANOVA analysis adjusted for potential confounders, multiple testing procedure, Gene Set Enrichment Analysis, and GO-functional classification were conducted for gene selection. Results were confirmed in independent adenocarcinoma and non-tumor tissues from two studies. We identified a gene expression signature characteristic of smoking that includes cell cycle genes, particularly those involved in the mitotic spindle formation (e.g., NEK2, TTK, PRC1). Expression of these genes strongly differentiated both smokers from non-smokers in lung tumors and early stage tumor tissue from non-tumor tissue (p<0.001 and fold-change >1.5, for each comparison), consistent with an important role for this pathway in lung carcinogenesis induced by smoking. These changes persisted many years after smoking cessation. NEK2 (p<0.001) and TTK (p = 0.002) expression in the noninvolved lung tissue was also associated with a 3-fold increased risk of mortality from lung adenocarcinoma in smokers. Conclusions/Significance Our work provides insight into the smoking-related mechanisms of lung neoplasia, and shows that the very mitotic genes known to be involved in cancer development are induced by smoking and affect survival. These genes are candidate targets for chemoprevention and treatment of lung cancer in smokers.


PLOS Genetics | 2007

Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk.

Montserrat Garcia-Closas; Núria Malats; Francisco X Real; Meredith Yeager; Robert Welch; Debra T. Silverman; Manolis Kogevinas; Mustafa Dosemeci; Jonine D. Figueroa; Nilanjan Chatterjee; Adonina Tardón; Consol Serra; Alfredo Carrato; Reina García-Closas; Cristiane Murta-Nascimento; Nathaniel Rothman; Stephen J. Chanock

Common genetic variation could alter the risk for developing bladder cancer. We conducted a large-scale evaluation of single nucleotide polymorphisms (SNPs) in candidate genes for cancer to identify common variants that influence bladder cancer risk. An Illumina GoldenGate assay was used to genotype 1,433 SNPs within or near 386 genes in 1,086 cases and 1,033 controls in Spain. The most significant finding was in the 5′ UTR of VEGF (rs25648, p for likelihood ratio test, 2 degrees of freedom = 1 × 10−5). To further investigate the region, we analyzed 29 additional SNPs in VEGF, selected to saturate the promoter and 5′ UTR and to tag common genetic variation in this gene. Three additional SNPs in the promoter region (rs833052, rs1109324, and rs1547651) were associated with increased risk for bladder cancer: odds ratio (95% confidence interval): 2.52 (1.06–5.97), 2.74 (1.26–5.98), and 3.02 (1.36–6.63), respectively; and a polymorphism in intron 2 (rs3024994) was associated with reduced risk: 0.65 (0.46–0.91). Two of the promoter SNPs and the intron 2 SNP showed linkage disequilibrium with rs25648. Haplotype analyses revealed three blocks of linkage disequilibrium with significant associations for two blocks including the promoter and 5′ UTR (global p = 0.02 and 0.009, respectively). These findings are biologically plausible since VEGF is critical in angiogenesis, which is important for tumor growth, its elevated expression in bladder tumors correlates with tumor progression, and specific 5′ UTR haplotypes have been shown to influence promoter activity. Associations between bladder cancer risk and other genes in this report were not robust based on false discovery rate calculations. In conclusion, this large-scale evaluation of candidate cancer genes has identified common genetic variants in the regulatory regions of VEGF that could be associated with bladder cancer risk.


Human Genetics | 2007

Genetic variation in the base excision repair pathway and bladder cancer risk

Jonine D. Figueroa; Núria Malats; Francisco X. Real; Debra T. Silverman; Manolis Kogevinas; Stephen J. Chanock; Robert Welch; Mustafa Dosemeci; Adonina Tardón; Consol Serra; Alfredo Carrato; Reina García-Closas; Gemma Castaño-Vinyals; Nathaniel Rothman; Montserrat Garcia-Closas

Genetic polymorphisms in DNA repair genes may impact individual variation in DNA repair capacity and alter cancer risk. In order to examine the association of common genetic variation in the base-excision repair (BER) pathway with bladder cancer risk, we analyzed 43 single nucleotide polymorphisms (SNPs) in 12 BER genes (OGG1, MUTYH, APEX1, PARP1, PARP3, PARP4, XRCC1, POLB, POLD1, PCNA, LIG1, and LIG3). Using genotype data from 1,150 cases of urinary bladder transitional cell carcinomas and 1,149 controls from the Spanish Bladder Cancer Study we estimated odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, gender, region and smoking status. SNPs in three genes showed significant associations with bladder cancer risk: the 8-oxoG DNA glycosylase gene (OGG1), the Poly (ADP-ribose) polymerase family member 1 (PARP1) and the major gap filling polymerase-β (POLB). Subjects who were heterozygous or homozygous variant for an OGG1 SNP in the promoter region (rs125701) had significantly decreased bladder cancer risk compared to common homozygous: OR (95%CI) 0.78 (0.63–0.96). Heterozygous or homozygous individuals for the functional SNP PARP1 rs1136410 (V762A) or for the intronic SNP POLB rs3136717 were at increased risk compared to those homozygous for the common alleles: 1.24 (1.02–1.51) and 1.30 (1.04–1.62), respectively. In summary, data from this large case-control study suggested bladder cancer risk associations with selected BER SNPs, which need to be confirmed in other study populations.


Environmental Health Perspectives | 2010

Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain.

Kenneth P. Cantor; Cristina M. Villanueva; Debra T. Silverman; Jonine D. Figueroa; Francisco X. Real; Monserrat Garcia-Closas; Núria Malats; Stephen J. Chanock; Meredith Yeager; Adonina Tardón; Reina García-Closas; Consol Serra; Alfredo Carrato; Gemma Castaño-Vinyals; Claudine Samanic; Nathaniel Rothman; Manolis Kogevinas

Background Bladder cancer has been linked with long-term exposure to disinfection by-products (DBPs) in drinking water. Objectives In this study we investigated the combined influence of DBP exposure and polymorphisms in glutathione S-transferase (GSTT1, GSTZ1) and cytochrome P450 (CYP2E1) genes in the metabolic pathways of selected by-products on bladder cancer in a hospital-based case–control study in Spain. Methods Average exposures to trihalomethanes (THMs; a surrogate for DBPs) from 15 years of age were estimated for each subject based on residential history and information on municipal water sources among 680 cases and 714 controls. We estimated effects of THMs and GSTT1, GSTZ1, and CYP2E1 polymorphisms on bladder cancer using adjusted logistic regression models with and without interaction terms. Results THM exposure was positively associated with bladder cancer: adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were 1.2 (0.8–1.8), 1.8 (1.1–2.9), and 1.8 (0.9–3.5) for THM quartiles 2, 3, and 4, respectively, relative to quartile 1. Associations between THMs and bladder cancer were stronger among subjects who were GSTT1 +/+ or +/− versus GSTT1 null (pinteraction = 0.021), GSTZ1 rs1046428 CT/TT versus CC (pinteraction = 0.018), or CYP2E1 rs2031920 CC versus CT/TT (pinteraction = 0.035). Among the 195 cases and 192 controls with high-risk forms of GSTT1 and GSTZ1, the ORs for quartiles 2, 3, and 4 of THMs were 1.5 (0.7–3.5), 3.4 (1.4–8.2), and 5.9 (1.8–19.0), respectively. Conclusions Polymorphisms in key metabolizing enzymes modified DBP-associated bladder cancer risk. The consistency of these findings with experimental observations of GSTT1, GSTZ1, and CYP2E1 activity strengthens the hypothesis that DBPs cause bladder cancer and suggests possible mechanisms as well as the classes of compounds likely to be implicated.


Cancer Research | 2010

Pathway analysis of breast cancer genome-wide association study highlights three pathways and one canonical signaling cascade

Idan Menashe; Dennis Maeder; Montserrat Garcia-Closas; Jonine D. Figueroa; Samsiddhi Bhattacharjee; Melissa Rotunno; Peter Kraft; David J. Hunter; Stephen J. Chanock; Philip S. Rosenberg; Nilanjan Chatterjee

Genome-wide association studies (GWAS) focus on relatively few highly significant loci, whereas less attention is given to other genotyped markers. Using pathway analysis to study existing GWAS data may shed light on relevant biological processes and illuminate new candidate genes. We applied a pathway-based approach to the breast cancer GWAS data of the National Cancer Institute (NCI) Cancer Genetic Markers of Susceptibility project that includes 1,145 cases and 1,142 controls. Pathways were retrieved from three databases: KEGG, BioCarta, and NCI Protein Interaction Database. Genes were represented by their most strongly associated SNP, and an enrichment score reflecting the overrepresentation of gene-based association signals in each pathway was calculated by using a weighted Kolmogorov-Smirnov procedure. Finally, hierarchical clustering was used to identify pathways with overlapping genes, and clusters with an excess of association signals were determined by the adaptive rank-truncated product (ARTP) method. A total of 421 pathways containing 3,962 genes was included in our study. Of these, three pathways (syndecan-1-mediated signaling, signaling of hepatocyte growth factor receptor, and growth hormone signaling) were highly enriched with association signals [P(ES) < 0.001, false discovery rate (FDR) = 0.118]. Our clustering analysis revealed that pathways containing key components of the RAS/RAF/mitogen-activated protein kinase canonical signaling cascade were significantly more likely to have an excess of association signals than expected by chance (P(ARTP) = 0.0051, FDR = 0.07). These results suggest that genetic alterations associated with these three pathways and one canonical signaling cascade may contribute to breast cancer susceptibility.


Journal of Clinical Oncology | 2012

CHEK2*1100delC Heterozygosity in Women With Breast Cancer Associated With Early Death, Breast Cancer–Specific Death, and Increased Risk of a Second Breast Cancer

Maren Weischer; Børge G. Nordestgaard; Paul Pharoah; Manjeet K. Bolla; Heli Nevanlinna; Laura J. van't Veer; Montserrat Garcia-Closas; John L. Hopper; Per Hall; Irene L. Andrulis; Peter Devilee; Peter A. Fasching; Hoda Anton-Culver; Diether Lambrechts; Maartje J. Hooning; Angela Cox; Graham G. Giles; Barbara Burwinkel; Annika Lindblom; Fergus J. Couch; Arto Mannermaa; Grethe Grenaker Alnæs; Esther M. John; Thilo Dörk; Henrik Flyger; Alison M. Dunning; Qin Wang; Taru A. Muranen; Richard van Hien; Jonine D. Figueroa

PURPOSE We tested the hypotheses that CHEK2*1100delC heterozygosity is associated with increased risk of early death, breast cancer-specific death, and risk of a second breast cancer in women with a first breast cancer. PATIENTS AND METHODS From 22 studies participating in the Breast Cancer Association Consortium, 25,571 white women with invasive breast cancer were genotyped for CHEK2*1100delC and observed for up to 20 years (median, 6.6 years). We examined risk of early death and breast cancer-specific death by estrogen receptor status and risk of a second breast cancer after a first breast cancer in prospective studies. RESULTS CHEK2*1100delC heterozygosity was found in 459 patients (1.8%). In women with estrogen receptor-positive breast cancer, multifactorially adjusted hazard ratios for heterozygotes versus noncarriers were 1.43 (95% CI, 1.12 to 1.82; log-rank P = .004) for early death and 1.63 (95% CI, 1.24 to 2.15; log-rank P < .001) for breast cancer-specific death. In all women, hazard ratio for a second breast cancer was 2.77 (95% CI, 2.00 to 3.83; log-rank P < .001) increasing to 3.52 (95% CI, 2.35 to 5.27; log-rank P < .001) in women with estrogen receptor-positive first breast cancer only. CONCLUSION Among women with estrogen receptor-positive breast cancer, CHEK2*1100delC heterozygosity was associated with a 1.4-fold risk of early death, a 1.6-fold risk of breast cancer-specific death, and a 3.5-fold risk of a second breast cancer. This is one of the few examples of a genetic factor that influences long-term prognosis being documented in an extensive series of women with breast cancer.


Breast Cancer Research | 2010

Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study.

Roger L. Milne; Mia M. Gaudet; Amanda B. Spurdle; Peter A. Fasching; Fergus J. Couch; Javier Benitez; Jose Ignacio Arias Perez; M. Pilar Zamora; Núria Malats; Isabel dos Santos Silva; Lorna Gibson; Olivia Fletcher; Nichola Johnson; Hoda Anton-Culver; Argyrios Ziogas; Jonine D. Figueroa; Louise A. Brinton; Mark E. Sherman; Jolanta Lissowska; John L. Hopper; Gillian S. Dite; Carmel Apicella; Melissa C. Southey; Alice J. Sigurdson; Martha S. Linet; Sara J. Schonfeld; D. Michal Freedman; Arto Mannermaa; Veli-Matti Kosma; Vesa Kataja

IntroductionSeveral common breast cancer genetic susceptibility variants have recently been identified. We aimed to determine how these variants combine with a subset of other known risk factors to influence breast cancer risk in white women of European ancestry using case-control studies participating in the Breast Cancer Association Consortium.MethodsWe evaluated two-way interactions between each of age at menarche, ever having had a live birth, number of live births, age at first birth and body mass index (BMI) and each of 12 single nucleotide polymorphisms (SNPs) (10q26-rs2981582 (FGFR2), 8q24-rs13281615, 11p15-rs3817198 (LSP1), 5q11-rs889312 (MAP3K1), 16q12-rs3803662 (TOX3), 2q35-rs13387042, 5p12-rs10941679 (MRPS30), 17q23-rs6504950 (COX11), 3p24-rs4973768 (SLC4A7), CASP8-rs17468277, TGFB1-rs1982073 and ESR1-rs3020314). Interactions were tested for by fitting logistic regression models including per-allele and linear trend main effects for SNPs and risk factors, respectively, and single-parameter interaction terms for linear departure from independent multiplicative effects.ResultsThese analyses were applied to data for up to 26,349 invasive breast cancer cases and up to 32,208 controls from 21 case-control studies. No statistical evidence of interaction was observed beyond that expected by chance. Analyses were repeated using data from 11 population-based studies, and results were very similar.ConclusionsThe relative risks for breast cancer associated with the common susceptibility variants identified to date do not appear to vary across women with different reproductive histories or body mass index (BMI). The assumption of multiplicative combined effects for these established genetic and other risk factors in risk prediction models appears justified.


Cancer Research | 2009

Polymorphisms in DNA repair genes, smoking, and bladder cancer risk: findings from the International Consortium of Bladder Cancer

Mariana C. Stern; Jie Lin; Jonine D. Figueroa; Karl T. Kelsey; Anne E. Kiltie; Jian-Min Yuan; Giuseppe Matullo; Tony Fletcher; Simone Benhamou; Jack A. Taylor; Donatella Placidi; Zuo-Feng Zhang; Gunnar Steineck; Nathaniel Rothman; Manolis Kogevinas; Debra T. Silverman; Núria Malats; Stephen J. Chanock; Xifeng Wu; Margaret R. Karagas; Angeline S. Andrew; Heather H. Nelson; D. Timothy Bishop; Sei C. Sak; Ananya Choudhury; Jennifer H. Barrett; Faye Elliot; Roman Corral; Amit Joshi; Manuela Gago-Dominguez

Tobacco smoking is the most important and well-established bladder cancer risk factor and a rich source of chemical carcinogens and reactive oxygen species that can induce damage to DNA in urothelial cells. Therefore, common variation in DNA repair genes might modify bladder cancer risk. In this study, we present results from meta-analyses and pooled analyses conducted as part of the International Consortium of Bladder Cancer. We included data on 10 single nucleotide polymorphisms corresponding to seven DNA repair genes from 13 studies. Pooled analyses and meta-analyses included 5,282 cases and 5,954 controls of non-Latino white origin. We found evidence for weak but consistent associations with ERCC2 D312N [rs1799793; per-allele odds ratio (OR), 1.10; 95% confidence interval (95% CI), 1.01-1.19; P = 0.021], NBN E185Q (rs1805794; per-allele OR, 1.09; 95% CI, 1.01-1.18; P = 0.028), and XPC A499V (rs2228000; per-allele OR, 1.10; 95% CI, 1.00-1.21; P = 0.044). The association with NBN E185Q was limited to ever smokers (interaction P = 0.002) and was strongest for the highest levels of smoking dose and smoking duration. Overall, our study provides the strongest evidence to date for a role of common variants in DNA repair genes in bladder carcinogenesis.


Carcinogenesis | 2008

Bladder cancer risk and genetic variation in AKR1C3 and other metabolizing genes

Jonine D. Figueroa; Núria Malats; Montserrat Garcia-Closas; Francisco X. Real; Debra T. Silverman; Manolis Kogevinas; Stephen J. Chanock; Robert Welch; Mustafa Dosemeci; Qing Lan; Adonina Tardón; Consol Serra; Alfredo Carrato; Reina García-Closas; Gemma Castaño-Vinyals; Nathaniel Rothman

Aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs) are carcinogens present in tobacco smoke and functional polymorphisms in NAT2 and GSTM1 metabolizing genes are associated with increased bladder cancer risk. We evaluated whether genetic variation in other candidate metabolizing genes are also associated with risk. Candidates included genes that control the transcription of metabolizing genes [aryl hydrocarbon receptor (AHR), AHRR and aryl hydrocarbon nuclear translocator (ARNT)] and genes that activate/detoxify AA or PAH (AKR1C3, CYP1A1, CYP1A2, CYP1B1, CYP3A4, EPHX1, EPHX2, NQO1, MPO, UGT1A4, SULT1A1 and SULT1A2). Using genotype data from 1150 cases of urothelial carcinomas and 1149 controls from the Spanish Bladder Cancer Study, we estimated odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, gender, region and smoking status. Based on a test for trend, we observed 10 non-redundant single-nucleotide polymorphisms (SNPs) in five genes (AKR1C3, ARNT, CYP1A1, CYP1B1 and SULT1A2) significantly associated with bladder cancer risk. We observed an inverse association with risk for the AKR1C3 promoter SNP rs1937845 [OR (95% CI) for heterozygote and homozygote variant compared with common homozygote genotype were 0.86 (0.70-1.06) and 0.74 (0.57-0.96), respectively; P for trend = 0.02]. Interestingly, genetic variation in this region has been associated with lung, non-Hodgkin lymphoma and prostate cancer risk. Analysis of additional SNPs to capture most (approximately 90%) of common genetic variation in AKR1C3 and haplotype walking analyses based on all AKR1C3 SNPs (n = 25) suggest two separate regions associated with bladder cancer risk. These results indicate that genetic variation in carcinogen-metabolizing genes, particularly AKR1C3, could be associated with bladder cancer risk.


Human Molecular Genetics | 2011

A genome-wide association study of bladder cancer identifies a new susceptibility locus within SLC14A1, a urea transporter gene on chromosome 18q12.3

Montserrat Garcia-Closas; Yuanqing Ye; Nathaniel Rothman; Jonine D. Figueroa; Núria Malats; Colin P. Dinney; Nilanjan Chatterjee; Ludmila Prokunina-Olsson; Zhaoming Wang; Jie Lin; Francisco X. Real; Kevin B. Jacobs; Dalsu Baris; Michael J. Thun; Immaculata De Vivo; Demetrius Albanes; Mark P. Purdue; Manolis Kogevinas; Ashish M. Kamat; Seth P. Lerner; H. Barton Grossman; Jian Gu; Xia Pu; Amy Hutchinson; Yi Ping Fu; Laurie Burdett; Meredith Yeager; Wei Tang; Adonina Tardón; Consol Serra

Genome-wide and candidate-gene association studies of bladder cancer have identified 10 susceptibility loci thus far. We conducted a meta-analysis of two previously published genome-wide scans (4501 cases and 6076 controls of European background) and followed up the most significant association signals [17 single nucleotide polymorphisms (SNPs) in 10 genomic regions] in 1382 cases and 2201 controls from four studies. A combined analysis adjusted for study center, age, sex, and smoking status identified a novel susceptibility locus that mapped to a region of 18q12.3, marked by rs7238033 (P = 8.7 × 10(-9); allelic odds ratio 1.20 with 95% CI: 1.13-1.28) and two highly correlated SNPs, rs10775480/rs10853535 (r(2)= 1.00; P = 8.9 × 10(-9); allelic odds ratio 1.16 with 95% CI: 1.10-1.22). The signal localizes to the solute carrier family 14 member 1 gene, SLC14A1, a urea transporter that regulates cellular osmotic pressure. In the kidney, SLC14A1 regulates urine volume and concentration whereas in erythrocytes it determines the Kidd blood groups. Our findings suggest that genetic variation in SLC14A1 could provide new etiological insights into bladder carcinogenesis.

Collaboration


Dive into the Jonine D. Figueroa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Sherman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Louise A. Brinton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Chanock

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gretchen L. Gierach

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Núria Malats

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Debra T. Silverman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nathaniel Rothman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Hewitt

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge