Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonny Rutqvist is active.

Publication


Featured researches published by Jonny Rutqvist.


International Journal of Rock Mechanics and Mining Sciences | 2002

A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock

Jonny Rutqvist; Yu-Shu Wu; Chin-Fu Tsang; Gudmundur S. Bodvarsson

Abstract This paper presents the methodology in which two computer codes—TOUGH2 and FLAC3D—are linked and jointly executed for coupled thermal–hydrologic–mechanical (THM) analysis of multiphase fluid flow, heat transfer, and deformation in fractured and porous rock. TOUGH2 is a well-established code for geohydrological analysis with multiphase, multicomponent fluid flow and heat transport, while FLAC3D is a widely used commercial code that is designed for rock and soil mechanics with thermomechanical and hydromechanical interactions. In this study, the codes are sequentially executed and linked through external coupling modules: one that dictates changes in effective stress as a function of multi-phase pore pressure and thermal expansion, and one that corrects porosity, permeability, and capillary pressure for changes in stress. The capability of a linked TOUGH-FLAC simulator is demonstrated on two complex coupled problems related to injection and storage of carbon dioxide in aquifers and to disposal of nuclear waste in unsaturated fractured porous media.


Geotechnical and Geological Engineering | 2012

The geomechanics of CO2 storage in deep sedimentary formations

Jonny Rutqvist

This paper provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. For such large-scale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.


International Journal of Rock Mechanics and Mining Sciences | 2001

Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models

Jonny Rutqvist; L. Borgesson; M. Chijimatsu; A. Kobayashi; Lanru Jing; T. S. Nguyen; J. Noorishad; Chin-Fu Tsang

This paper presents the general governing equations for coupled thermohydromechanical (THM) processes in saturated and unsaturated geologic formations and reviews four finite element codes for modeling of such system. Three of the codes are developed for the special purpose of analyzing coupled THM processes in unsaturated porous and fractured geological media, and the fourth is a commercial code that has been used in its standard version, with a few adaptations for this specialized problem. The basic assumptions and fundamental equations for coupled THM processes in unsaturated porous fractured rock are presented, and formulations of the four finite element models are compared.


Spe Reservoir Evaluation & Engineering | 2011

Challenges, Uncertainties, and Issues Facing Gas Production From Gas-Hydrate Deposits

George J. Moridis; Timothy S. Collett; Mehran Pooladi-Darvish; Steven H. Hancock; Carlos Santamarina; Ray Boswell; Timothy J. Kneafsey; Jonny Rutqvist; Michael B. Kowalsky; Matthew T. Reagan; E. Dendy Sloan; Amadeu K. Sum; Carolyn A. Koh

Challenges, Uncertainties and Issues Facing Gas Production From Gas Hydrate Deposits G.J. Moridis, SPE, Lawrence Berkeley National Laboratory; T.S. Collett, SPE, US Geological Survey; M. Pooladi- Darvish, SPE, University of Calgary and Fekete; S. Hancock, SPE, RPS Group; C. Santamarina, Georgia Institute of Technology; R. Boswell, US Department of Energy; T. Kneafsey, J. Rutqvist and M. B. Kowalsky, Lawrence Berkeley National Laboratory; M.T. Reagan, SPE, Lawrence Berkeley National Laboratory; E.D. Sloan, SPE, Colorado School of Mines; A.K. Sum and C. A. Koh, Colorado School of Mines Abstract The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns. Introduction Background. Gas hydrates (GH) are solid crystalline compounds of water and gaseous substances described by the general chemical formula G•N H H 2 O, in which the molecules of gas G (referred to as guests) occupy voids within the lattices of ice- like crystal structures. Gas hydrate deposits occur in two distinctly different geographic settings where the necessary conditions of low temperature T and high pressure P exist for their formation and stability: in the Arctic (typically in association with permafrost) and in deep ocean sediments (Kvenvolden, 1988). The majority of naturally occurring hydrocarbon gas hydrates contain CH 4 in overwhelming abundance. Simple CH 4 - hydrates concentrate methane volumetrically by a factor of ~164 when compared to standard P and T conditions (STP). Natural CH 4 -hydrates crystallize mostly in the structure I form, which has a hydration number N H ranging from 5.77 to 7.4, with N H = 6 being the average hydration number and N H = 5.75 corresponding to complete hydration (Sloan and Koh, 2008). Natural GH can also contain other hydrocarbons (alkanes C  H 2+2 ,  = 2 to 4), but may also contain trace amounts of other gases (mainly CO 2 , H 2 S or N 2 ). Although there has been no systematic effort to map and evaluate this resource on a global scale, and current estimates of in-place volumes vary widely (ranging between 10 15 to 10 18 m 3 at standard conditions), the consensus is that the worldwide quantity of hydrocarbon within GH is vast (Milkov, 2004; Boswell and Collett, 2010). Given the sheer magnitude of the resource, ever increasing global energy demand, and the finite volume of conventional fossil fuel resources, GH are emerging as a potential energy source for a growing number of nations. The attractiveness of GH is further enhanced by the environmental desirability of natural gas, as it has the lowest carbon intensity of all fossil fuels. Thus, the appeal of GH accumulations as future hydrocarbon gas sources is rapidly increasing and their production potential clearly demands technical and economic evaluation. The past decade has seen a marked acceleration in gas hydrate R&D, including both a proliferation of basic scientific endeavors as well as the strong emergence of focused field studies of GH occurrence and resource potential, primarily within national GH programs (Paul et al., 2010). Together, these efforts have helped to clarify the dominant issues and challenges facing the extraction of methane from gas hydrates. A review paper by Moridis et al. (2009) summarized the status of the effort for production from gas hydrates. The authors discussed the distribution of natural gas hydrate accumulations, the status of the primary international research and development R&D programs (including current policies, focus and priorities), and the remaining science and technological challenges facing commercialization of production. After a brief examination of GH accumulations that are well characterized and appear to be models for future development and gas production, they analyzed the role of numerical simulation in the assessment of the hydrate production potential, identified the data needs for reliable predictions, evaluated the status of knowledge with regard to these needs, discussed knowledge gaps and their impact, and reached the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. Furthermore, Moridis et al. (2009) reviewed the current body of literature relevant to potential productivity from different types of GH deposits, and determined that there are consistent indications of a large production potential at high rates over long periods from a wide variety of GH deposits. Finally, they identified (a) features, conditions, geology and techniques that are desirable in the selection of potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain GH deposits undesirable for production.


Journal of Geophysical Research | 2009

Modeling crustal deformation and rupture processes related to upwelling of deep CO2‐rich fluids during the 1965–1967 Matsushiro earthquake swarm in Japan

Frédéric Cappa; Jonny Rutqvist; Koji Yamamoto

a 2-year period (1965‐1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring outflows with changes in chemical compositions, as well as carbon dioxide (CO2)degassing.PreviousinvestigationsoftheMatsushiroearthquakeswarmhavesuggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modeling, we show that observed crustal deformations and seismicity could have been driven by upwelling of deep CO2-rich fluids around the intersection of two fault zones: the regional east Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface upliftareconvincinglyexplainedbyafewmegapascalsofpressurizationfromtheupwelling fluid within the critically stressed crust, a crust under a strike-slip stress regime near the frictionalstrengthlimit.Ouranalysisindicatesthatthemostimportantcausefortriggeringof seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a 2-order-of-magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modeling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO2 in the shallow seismogenic crust. Thus our study provides furtherevidenceoftheimportantroleofdeepfluidsourcesinearthquake faultdynamicsand surface deformations.


Water Resources Research | 1998

DETERMINATION OF FRACTURE STORATIVITY IN HARD ROCKS USING HIGH-PRESSURE INJECTION TESTING

Jonny Rutqvist; Jahan Noorishad; Chin-Fu Tsang; Ove Stephansson

The determination of the storage capacity of fractures in crystalline rocks by means of hydraulic injection tests is studied by coupled hydromechanical finite element simulations. The results verify that the storage is related to the fracture opening, which is dependent on the combined stiffness of the fracture and the ambient rock mass. In most practical cases the storage is entirely controlled by the normal stiffness of the fractures. The strong coupling to the fracture opening implies that the storage capacity can be estimated from the pressure dependency of the fracture aperture in a high-pressure injection test. Such high-pressure injection tests can be conducted in addition to a conventional low-pressure test to independently determine the storativity of the fracture. This provides an additional validation of the evaluated storativity, which implies not only that the value is more accurately assessed but also that other hydraulic properties can be determined more unambiguously. The method of high-pressure injection testing is applied in field experiments to deep fractures in granitic rocks at two sites, and its usefulness is demonstrated in an analysis of the field data.


International Journal of Rock Mechanics and Mining Sciences | 2001

Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine - comparison of field results to predictions of four finite element codes

Jonny Rutqvist; L. Borgesson; M. Chijimatsu; T. S. Nguyen; Lanru Jing; J. Noorishad; Chin-Fu Tsang

Four computer codes were applied for a prediction of coupled thermo-hydro-mechanical responses during an in situ heater experiment which simulates a nuclear waste deposition hole with a waste over- ...


International Journal of Rock Mechanics and Mining Sciences | 2000

Uncertainty in the Maximum Principal Stress Estimated from Hydraulic Fracturing Measurements Due to the Presence of the Induced Fracture

Jonny Rutqvist; Chin-Fu Tsang; Ove Stephansson

The classical theory for hydraulic fracturing stress measurements assumes an ideal case with a linear elastic, homogenous, and isotropic medium; and a fracture that reopens distinctly when the minimum tangential borehole stress is exceeded. The induced fracture disturbs this ideal picture in several aspects, which are important for the evaluation of the maximum horizontal principal stress using the fracture reopening pressure. This disturbance can be attributed to the fracture normal stiffness and the initial hydraulic fracture permeability. In this paper, the hydraulic fracturing reopening test is studied by coupled hydromechanical modeling that takes into account an induced fracture that is incompletely closed. The result shows that with realistic equipment compliance, the apparent fracture reopening evaluated from the well-pressure is close to the magnitude of the minimum horizontal principal stress with little or no correlation to the maximum horizontal principal stress. This observation suggests that the determination of maximum principal stress by hydraulic fracturing using the reopening pressure is very uncertain.


International Journal of Rock Mechanics and Mining Sciences | 2001

Thermo-hydro-mechanical characterisation of a bentonite-based buffer material by laboratory tests and numerical back analyses

Lennart Börgesson; Masakasu Chijimatsu; T. Fujita; T.S. Nguyen; Jonny Rutqvist; Lanru Jing

This paper presents some laboratory tests performed on the bentonite used as buffer material in the engineered barrier experiment in Kamaishi mine in Japan and a collective effort of four research groups to characterise the coupled thermo-hydro-mechanical behaviour of the bentonite by comparing numerical calculations with the laboratory test results. Each research group used finite element programs with constitutive models capable to simulate both liquid and vapour flux of water, heat transfer, volume change, swelling pressure and mechanical deformation. Numerical calibrations were performed against results obtained from three types of laboratory tests: water infiltration tests, thermal gradient tests and swelling pressure tests. Parameter values, which could not be directly measured in laboratory tests, were obtained with these calculations.


Journal of Contaminant Hydrology | 2003

Analysis of thermal–hydrologic–mechanical behavior near an emplacement drift at Yucca Mountain

Jonny Rutqvist; Chin-Fu Tsang

A coupled thermal, hydrologic and mechanical (THM) analysis is conducted to evaluate the impact of coupled THM processes on the performance of a potential nuclear waste repository at Yucca Mountain, Nevada. The analysis considers changes in rock mass porosity, permeability, and capillary pressure caused by rock deformations during drift excavation, as well as those caused by thermomechanically induced rock deformations after emplacement of the heat-generating waste. The analysis consists of a detailed calibration of coupled hydraulic-mechanical rock mass properties against field experiments, followed by a prediction of the coupled thermal, hydrologic, and mechanical behavior around a potential repository drift. For the particular problem studied and parameters used, the analysis indicates that the stress-induced permeability changes will be within one order of magnitude and that these permeability changes do not significantly impact the overall flow pattern around the repository drift.

Collaboration


Dive into the Jonny Rutqvist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens T. Birkholzer

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Pierre Jeanne

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lanru Jing

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Antonio P. Rinaldi

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Frédéric Cappa

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Patrick F. Dobson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

George J. Moridis

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Frédéric Cappa

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

T.S. Nguyen

Canadian Nuclear Safety Commission

View shared research outputs
Researchain Logo
Decentralizing Knowledge