Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joo-Won Suh is active.

Publication


Featured researches published by Joo-Won Suh.


Microbiology | 2008

Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria

Choong-Min Kang; Seeta Nyayapathy; Jung-Yeon Lee; Joo-Won Suh; Robert N. Husson

The Mycobacterium tuberculosis genome contains 11 serine/threonine kinase genes, and the products of two of these, PknA and PknB, are key components of a signal transduction pathway that regulates cell division and/or morphology. Previously, we have shown that one substrate of these kinases is Wag31, a homologue of the cell division protein DivIVA that is present, but not known to be phosphorylated, in other Gram-positive bacteria. Here, we investigate the localization and function of Wag31 and its phosphorylation. We demonstrate that Wag31 is localized to the cell poles. We further show that wag31 is an essential gene and that depletion of its product causes a dramatic morphological change in which one end of the cell becomes round rather than rod-shaped. This abnormal morphology appears to be caused by a defect in polar peptidoglycan synthesis. Finally, expression of M. tuberculosis wag31 in the wag31 conditional mutant of Mycobacterium smegmatis altered the growth rate in a manner that depended on the phospho-acceptor residue encoded by the allele being expressed. Taken together, these results indicate that Wag31 regulates cell shape and cell wall synthesis in M. tuberculosis through a molecular mechanism by which the activity of Wag31 can be modulated in response to environmental signals.


Journal of the American Chemical Society | 2011

Biosynthesis of the Allylmalonyl-CoA Extender Unit for the FK506 Polyketide Synthase Proceeds through a Dedicated Polyketide Synthase and Facilitates the Mutasynthesis of Analogues

SangJoon Mo; Donghwan Kim; Jong-Hyun Lee; Je Won Park; Devi B. Basnet; Yeon Hee Ban; Young Ji Yoo; Shu-Wei Chen; Sung Ryeol Park; Eun Ae Choi; Eunji Kim; Ying-Yu Jin; Sung-Kwon Lee; Ju Yeol Park; Yuan Liu; Mi Ok Lee; Keum Soon Lee; Sang Jun Kim; Dooil Kim; Byoung Chul Park; Sang-gi Lee; Ho Jeong Kwon; Joo-Won Suh; Bradley S. Moore; Si-Kyu Lim; Yeo Joon Yoon

The allyl moiety of the immunosuppressive agent FK506 is structurally unique among polyketides and critical for its potent biological activity. Here, we detail the biosynthetic pathway to allylmalonyl-coenzyme A (CoA), from which the FK506 allyl group is derived, based on a comprehensive chemical, biochemical, and genetic interrogation of three FK506 gene clusters. A discrete polyketide synthase (PKS) with noncanonical domain architecture presumably in coordination with the fatty acid synthase pathway of the host catalyzes a multistep enzymatic reaction to allylmalonyl-CoA via trans-2-pentenyl-acyl carrier protein. Characterization of this discrete pathway facilitated the engineered biosynthesis of novel allyl group-modified FK506 analogues, 36-fluoro-FK520 and 36-methyl-FK506, the latter of which exhibits improved neurite outgrowth activity. This unique feature of FK506 biosynthesis, in which a dedicated PKS provides an atypical extender unit for the main modular PKS, illuminates a new strategy for the combinatorial biosynthesis of designer macrolide scaffolds as well as FK506 analogues.


Journal of Bacteriology | 2003

Accumulation of S-Adenosyl-l-Methionine Enhances Production of Actinorhodin but Inhibits Sporulation in Streptomyces lividans TK23

Dong-jin Kim; Jung-Hyun Huh; Young-Yell Yang; Choong-Min Kang; In-Hyung Lee; Chang-Gu Hyun; Soon-Kwang Hong; Joo-Won Suh

S-Adenosyl-L-methionine synthetase (SAM-s) catalyzes the biosynthesis of SAM from ATP and L-methionine. Despite extensive research with many organisms, its role in Streptomyces sp. remains unclear. In the present study, the putative SAM-s gene was isolated from a spectinomycin producer, Streptomyces spectabilis. The purified protein from the transformed Escherichia coli with the isolated gene synthesized SAM from L-methionine and ATP in vitro, strongly indicating that the isolated gene indeed encoded the SAM-s protein. The overexpression of the SAM-s gene in Streptomyces lividans TK23 inhibited sporulation and aerial mycelium formation but enhanced the production of actinorhodin in both agar plates and liquid media. Surprisingly, the overexpressed SAM was proven by Northern analysis to increase the production of actinorhodin through the induction of actII-ORF4, a transcription activator of actinorhodin biosynthetic gene clusters. In addition, we found that a certain level of intracellular SAM is critical for the induction of antibiotic biosynthetic genes, since the control strain harboring only the plasmid DNA did not show any induction of actII-ORF4 until it reached a certain level of SAM in the cell. From these results, we concluded that the SAM plays important roles as an intracellular factor in both cellular differentiation and antibiotic production in Streptomyces sp.


Journal of Applied Microbiology | 2005

Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua

J.S. Han; Jinhua Cheng; Tae-Mi Yoon; J. Song; A. Rajkarnikar; W.G. Kim; I.D. Yoo; Y.Y. Yang; Joo-Won Suh

Aims:  To identify an antagonistic strain against Streptomyces scabiei and to characterize the antibiotic agent. The efficacy of the isolated strain in controlling common scab disease was also evaluated.


Applied Microbiology and Biotechnology | 2013

Effects of actinobacteria on plant disease suppression and growth promotion

Sasikumar Arunachalam Palaniyandi; Seung Hwan Yang; Lixin Zhang; Joo-Won Suh

Biological control and plant growth promotion by plant beneficial microbes has been viewed as an alternative to the use of chemical pesticides and fertilizers. Bacteria and fungi that are naturally associated with plants and have a beneficial effect on plant growth by the alleviation of biotic and abiotic stresses were isolated and developed into biocontrol (BCA) and plant growth-promoting agents (PGPA). Actinobacteria are a group of important plant-associated spore-forming bacteria, which have been studied for their biocontrol, plant growth promotion, and interaction with plants. This review summarizes the effects of actinobacteria as BCA, PGPA, and its beneficial associations with plants.


BMC Microbiology | 2010

Regulation of Polar Peptidoglycan Biosynthesis by Wag31 Phosphorylation in Mycobacteria

Charul Jani; Hyungjin Eoh; Jae Jin Lee; Khozima Hamasha; Moodakare Bheema Sahana; Jeong-Sun Han; Seeta Nyayapathy; Jung-Yeon Lee; Joo-Won Suh; Sang Hee Lee; Steve J Rehse; Dean C. Crick; Choong-Min Kang

BackgroundSensing and responding to environmental changes is a central aspect of cell division regulation. Mycobacterium tuberculosis contains eleven Ser/Thr kinases, two of which, PknA and PknB, are key signaling molecules that regulate cell division/morphology. One substrate of these kinases is Wag31, and we previously showed that partial depletion of Wag31 caused morphological changes indicative of cell wall defects, and that the phosphorylation state of Wag31 affected cell growth in mycobacteria. In the present study, we further characterized the role of the Wag31 phosphorylation in polar peptidoglycan biosynthesis.ResultsWe demonstrate that the differential growth among cells expressing different wag31 alleles (wild-type, phosphoablative, or phosphomimetic) is caused by, at least in part, dissimilar nascent peptidoglycan biosynthesis. The phosphorylation state of Wag31 is found to be important for protein-protein interactions between the Wag31 molecules, and thus, for its polar localization. Consistent with these results, cells expressing a phosphomimetic wag31 allele have a higher enzymatic activity in the peptidoglycan biosynthetic pathway.ConclusionsThe Wag31Mtb phosphorylation is a novel molecular mechanism by which Wag31Mtb regulates peptidoglycan synthesis and thus, optimal growth in mycobacteria.


Cancer Cell | 2013

Runx3 Inactivation Is a Crucial Early Event in the Development of Lung Adenocarcinoma

You-Soub Lee; Jung-Won Lee; Ju-Won Jang; Xin-Zi Chi; Jang-Hyun Kim; Ying-Hui Li; Min-Kyu Kim; DaMi Kim; Byeung-Sub Choi; Eung-Gook Kim; Jin-Haeng Chung; Ok-Jun Lee; You-Mie Lee; Joo-Won Suh; Linda Shyue Huey Chuang; Yoshiaki Ito; Suk-Chul Bae

Targeted inactivation of Runx3 in mouse lung induced mucinous and nonmucinous adenomas and markedly shortened latency of adenocarcinoma formation induced by oncogenic K-Ras. RUNX3 was frequently inactivated in K-RAS mutated human lung adenocarcinomas. A functional genetic screen of a fly mutant library and molecular analysis in cultured cell lines revealed that Runx3 forms a complex with BRD2 in a K-Ras-dependent manner in the early phase of the cell cycle; this complex induces expression of p14(ARF)/p19(Arf) and p21(WAF/CIP). When K-Ras was constitutively activated, the Runx3-BRD2 complex was stably maintained and expression of both p14(ARF) and p21(WAF/CIP) was prolonged. These results provide a missing link between oncogenic K-Ras and the p14(ARF)-p53 pathway, and may explain how cells defend against oncogenic K-Ras.


Journal of Applied Microbiology | 2014

Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants

Sasikumar Arunachalam Palaniyandi; Karthiyaini Damodharan; Seung Hwan Yang; Joo-Won Suh

To identify an actinobacterial strain that can promote growth and alleviate salinity stress in tomato plants.


Bioscience, Biotechnology, and Biochemistry | 2009

Hypertonic Stress Increased Extracellular ATP Levels and the Expression of Stress-Responsive Genes in Arabidopsis thaliana Seedlings

Sun-Hee Kim; Seung Hwan Yang; Tae-Jong Kim; Jeong-Sun Han; Joo-Won Suh

Arabidopsis seedlings increased extracellular ATP (exATP) concentrations transiently in extracellular matrix (ECM) under hypertonic stresses. The increased transcription levels of two apyrase genes, AtAPY1 and AtAPY2, in accordance with exATP accumulation, suggests active regulation of exATP concentration. Arabidopsis seedlings subjected to hypertonic stresses survived after incubation with β,γ-methyleneadenosine-5′-triphosphate, which usually causes cell death through competitive exclusion of ATP. This confirms that the enhanced viability was due to accumulated exATP. The increased concentration of hydrogen peroxide through NADPH oxidase expression suggests the possible importance of exATP in stress response under hypertonic stresses. The mRNA levels of exATP inducible genes (AtMAPK3, AtACS6, and AtERF4) and the reactive oxygen species inducible gene (AtPAL1) were increased by hypertonic stresses. We suggest that exATP accumulation plays a role as a regulatory mechanism in the hypertonic stress response in Arabidopsis seedlings.


Biochemical and Biophysical Research Communications | 2010

Characterization of a chromosomal toxin-antitoxin, Rv1102c-Rv1103c system in Mycobacterium tuberculosis

Jeong-Sun Han; Jae Jin Lee; Tripti Anandan; Minghui Zeng; Srinivas R. Sripathi; Wan Jin Jahng; Sang Hee Lee; Joo-Won Suh; Choong-Min Kang

Toxin-antitoxin systems, ubiquitous in prokaryotic genomes, have been proposed to play an important role in several stress responses. While Mycobacterium tuberculosis contains more than 80 putative TA loci, the roles they play in this pathogen are yet to be studied. Here, we characterize a chromosomal Rv1102c-Rv1103c TA system in M. tuberculosis. We found that the Rv1102c toxin interacts with the Rv1103c antitoxin in a pull-down assay and the yeast two-hybrid system. Rv1102c cleaved the era mRNA in Escherichia coli, and cleavage was inhibited by co-expression of Rv1103c. Heterologous expression of Rv1102c led to growth arrest in E. coli, which was fully recovered only when Rv1103c was co-expressed in cis with Rv1102c, suggesting that the production and assembly of Rv1102c and Rv1103c are tightly linked. Our additional results indicate that translational coupling of the Rv1102c and Rv1103c genes is important for Rv1102c-Rv1103c binding. Finally, we discovered that the expression of Rv1102c induced growth arrest and increased the level of persister cells in Mycobacterium smegmatis. These results suggest that the Rv1102c-Rv1103c TA system could play a role in M. tuberculosis pathogenesis via generating bacilli that survive in the face of multidrug therapy.

Collaboration


Dive into the Joo-Won Suh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seung-Chun Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge