Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joohong Ahnn is active.

Publication


Featured researches published by Joohong Ahnn.


Molecules and Cells | 2009

C. elegans behavior of preference choice on bacterial food

Emad Abd-elmoniem Abada; Hyun Sung; Meenakshi Dwivedi; Byung-Jae Park; Sun-Kyung Lee; Joohong Ahnn

Caenorhabditis elegans is a free living soil nematode and thus in its natural habitat, C. elegans encounters many different species of soil bacteria. Although some soil bacteria may be excellent sources of nutrition for the worm, others may be pathogenic. Thus, we undertook a study to understand how C. elegans can identify their preferred food using a simple behavioral assay. We found that there are various species of soil bacteria that C. elegans prefers in comparison to the standard laboratory E. coli strain OP50. In particular, two bacterial strains, Bacillus mycoides and Bacillus soli, were preferred strains. Interestingly, the sole feeding of these bacteria to wild type animals results in extended lifespan through the activation of the autophagic process. Further studies will be required to understand the precise mechanism controlling the behavior of identification and selection of food in C. elegans.


Science Signaling | 2014

Interplay Between the Oxidoreductase PDIA6 and microRNA-322 Controls the Response to Disrupted Endoplasmic Reticulum Calcium Homeostasis

Jody Groenendyk; Zhenling Peng; Elzbieta Dudek; Xiao Fan; Marcin J. Mizianty; Estefanie Dufey; Hery Urra; Denisse Sepulveda; Diego Rojas-Rivera; Yunki Lim; Do Han Kim; Kayla Baretta; Sonal Srikanth; Yousang Gwack; Joohong Ahnn; Randal J. Kaufman; Sun-Kyung Lee; Claudio Hetz; Lukasz Kurgan; Marek Michalak

Depletion of Ca2+ in the endoplasmic reticulum favors activation of a stress response involving IRE1α. Responding the Right Way to Cellular Stress Some proteins must be folded correctly in the endoplasmic reticulum (ER) to function properly. Various stress conditions can cause the buildup of unfolded proteins in the ER, which can cause cell death. There are multiple ways in which cells can respond to deal with the buildup of unfolded proteins. Groenendyk et al. investigated how cells deal with the stress of depletion of calcium ions from the ER and identified a pathway involving a microRNA and an oxidoreductase in the ER. They found that depletion of calcium from the ER resulted in the decreased abundance of a microRNA, which enabled a target mRNA and the oxidoreductase it encoded to accumulate. The oxidoreductase then activated a specific stress response. The authors showed that this pathway could be present in mice and nematodes. The disruption of the energy or nutrient balance triggers endoplasmic reticulum (ER) stress, a process that mobilizes various strategies, collectively called the unfolded protein response (UPR), which reestablish homeostasis of the ER and cell. Activation of the UPR stress sensor IRE1α (inositol-requiring enzyme 1α) stimulates its endoribonuclease activity, leading to the generation of the mRNA encoding the transcription factor XBP1 (X-box binding protein 1), which regulates the transcription of genes encoding factors involved in controlling the quality and folding of proteins. We found that the activity of IRE1α was regulated by the ER oxidoreductase PDIA6 (protein disulfide isomerase A6) and the microRNA miR-322 in response to disruption of ER Ca2+ homeostasis. PDIA6 interacted with IRE1α and enhanced IRE1α activity as monitored by phosphorylation of IRE1α and XBP1 mRNA splicing, but PDIA6 did not substantially affect the activity of other pathways that mediate responses to ER stress. ER Ca2+ depletion and activation of store-operated Ca2+ entry reduced the abundance of the microRNA miR-322, which increased PDIA6 mRNA stability and, consequently, IRE1α activity during the ER stress response. In vivo experiments with mice and worms showed that the induction of ER stress correlated with decreased miR-322 abundance, increased PDIA6 mRNA abundance, or both. Together, these findings demonstrated that ER Ca2+, PDIA6, IRE1α, and miR-322 function in a dynamic feedback loop modulating the UPR under conditions of disrupted ER Ca2+ homeostasis.


FEBS Letters | 2007

PYP-1, inorganic pyrophosphatase, is required for larval development and intestinal function in C. elegans

Kyung Min Ko; Wonhae Lee; Jae-Ran Yu; Joohong Ahnn

Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of inorganic pyrophosphate (PPi) into phosphate (Pi), which provides a thermodynamic driving force for important biosynthetic reactions. The nematode Caenorhabditis elegans gene C47E12.4 encodes a PPase (PYP‐1) which shows 54% amino acid identity with human PPase. PYP‐1 exhibits specific enzyme activity and is mainly expressed in the intestinal and nervous system. A null mutant of pyp‐1 reveals a developmental arrest at early larval stages and exhibits gross defects in intestinal morphology and function. The larval arrest phenotype was successfully rescued by reintroduction of the pyp‐1 gene, suggesting that PYP‐1 is required for larval development and intestinal function in C. elegans.


BMC Cell Biology | 2010

A genetic screen for modifiers of Drosophila caspase Dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes

Young-Il Kim; Taewoo Ryu; Judong Lee; Young-Shin Heo; Joohong Ahnn; Seung-Jae Lee; Ook-Joon Yoo

BackgroundCaspases are cysteine proteases with essential functions in the apoptotic pathway; their proteolytic activity toward various substrates is associated with the morphological changes of cells. Recent reports have described non-apoptotic functions of caspases, including autophagy. In this report, we searched for novel modifiers of the phenotype of Dcp-1 gain-of-function (GF) animals by screening promoter element- inserted Drosophila melanogaster lines (EP lines).ResultsWe screened ~15,000 EP lines and identified 72 Dcp-1-interacting genes that were classified into 10 groups based on their functions and pathways: 4 apoptosis signaling genes, 10 autophagy genes, 5 insulin/IGF and TOR signaling pathway genes, 6 MAP kinase and JNK signaling pathway genes, 4 ecdysone signaling genes, 6 ubiquitination genes, 11 various developmental signaling genes, 12 transcription factors, 3 translation factors, and 11 other unclassified genes including 5 functionally undefined genes. Among them, insulin/IGF and TOR signaling pathway, MAP kinase and JNK signaling pathway, and ecdysone signaling are known to be involved in autophagy. Together with the identification of autophagy genes, the results of our screen suggest that autophagy counteracts Dcp-1-induced apoptosis. Consistent with this idea, we show that expression of eGFP-Atg5 rescued the eye phenotype caused by Dcp-1 GF. Paradoxically, we found that over-expression of full-length Dcp-1 induced autophagy, as Atg8b-GFP, an indicator of autophagy, was increased in the eye imaginal discs and in the S2 cell line. Taken together, these data suggest that autophagy suppresses Dcp-1-mediated apoptotic cell death, whereas Dcp-1 positively regulates autophagy, possibly through feedback regulation.ConclusionsWe identified a number of Dcp-1 modifiers that genetically interact with Dcp-1-induced cell death. Our results showing that Dcp-1 and autophagy-related genes influence each other will aid future investigations of the complicated relationships between apoptosis and autophagy.


Journal of Molecular Biology | 2009

C. elegans STI-1, the Homolog of Sti1/Hop, Is Involved in Aging and Stress Response

Hyun-Ok Song; Wonhae Lee; Kiyoung An; Hye-suk Lee; Jeong Hoon Cho; Zee-Yong Park; Joohong Ahnn

Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.


Biochimica et Biophysica Acta | 2010

Vacuolar (H + )-ATPases in Caenorhabditis elegans: What can we learn about giant H + pumps from tiny worms?

Sun-Kyung Lee; Weixun Li; Seong Eon Ryu; Taiyoun Rhim; Joohong Ahnn

Vacuolar (H(+))-ATPases, also called V-ATPases, are ATP-driven proton pumps that are highly phylogenetically conserved. Early biochemical and cell biological studies have revealed many details of the molecular mechanism of proton pumping and of the structure of the multi-subunit membrane complex, including the stoichiometry of subunit composition. In addition, yeast and mouse genetics have broadened our understanding of the physiological consequences of defective vacuolar acidification and its related disease etiologies. Recently, phenotypic investigation of V-ATPase mutants in Caenorhabditis elegans has revealed unexpected new roles of V-ATPases in both cellular function and early development. In this review, we discuss the functions of the V-ATPases discovered in C. elegans.


PLOS ONE | 2013

Pharmacological activation of Sirt1 ameliorates polyglutamine-induced toxicity through the regulation of autophagy.

Bae Hyun Shin; Yunki Lim; Hye Jin Oh; Sang Min Park; Sun-Kyung Lee; Joohong Ahnn; Do Han Kim; Woo Keun Song; Tae Hwan Kwak; Woo Jin Park

Intracellular accumulation of polyglutamine (polyQ)-expanded Huntingtin (Htt) protein is a hallmark of Huntington’s disease (HD). This study evaluated whether activation of Sirt1 by the anti-cancer agent, β-lapachone (β-lap), induces autophagy in human neuroblastoma SH-SY5Y cells, thereby reducing intracellular levels of polyQ aggregates and their concomitant cytotoxicity. Treatment of cells with β-lap markedly diminished the cytotoxicity induced by forced expression of Htt exon 1 containing a pathogenic polyQ stretch fused to green fluorescent protein (HttEx1(97Q)-GFP). β-lap increased autophagy in SH-SY5Y cells, as evidenced by the increased formation of LC3-II and autolysosomes. Furthermore, β-lap reduced HttEx1(97Q)-GFP aggregation, which was significantly prevented by co-incubation with 3-methyladenine, an inhibitor of autophagy. β-lap increased Sirt1 activity, as shown by the increased deacetylation of the Sirt1 substrates, PARP-1 and Atg5, and the nuclear translocation of FOXO1. Both the induction of autophagy and attenuation of HttEx1(97Q)-GFP aggregation by β-lap were significantly prevented by co-incubation with sirtinol, a general sirtuin inhibitor or by co-transfection with shRNA against Sirt1. The pro-autophagic actions of β-lap were further investigated in a transgenic Caenorhabditis elegans (C. elegans) line that expressed Q67 fused to cyanine fluorescent protein (Q67). Notably, β-lap reduced the number of Q67 puncta and restored Q67-induced defects in motility, which were largely prevented by pre-treatment with RNAi against sir-2.1, the C. elegans orthologue of Sirt1. Collectively, these data suggest that β-lap induces autophagy through activation of Sirt1, which in turn leads to a reduction in polyQ aggregation and cellular toxicity. Thus, β-lap provides a novel therapeutic opportunity for the treatment of HD.


Biochemical and Biophysical Research Communications | 2009

Functional assessment of Nramp-like metal transporters and manganese in Caenorhabditis elegans

Jaya Bandyopadhyay; Hyun-Ok Song; Byung-Jae Park; Gunasekaran Singaravelu; Ju Lee Sun; Joohong Ahnn; Jeong Hoon Cho

Nramp1 (natural resistance-associated macrophage protein-1) is a functionally conserved iron-manganese transporter in macrophages. Manganese (Mn), a superoxide scavenger, is required in trace amounts and functions as a cofactor for most antioxidants. Three Nramp homologs, smf-1, smf-2, and smf-3, have been identified thus far in the nematode Caenorhabditis elegans. A GFP promoter assay revealed largely intestinal expression of the smf genes from early embryonic through adult stages. In addition, smf deletion mutants showed increased sensitivity to excess Mn and mild sensitivity to EDTA. Interestingly, these smf deletion mutants demonstrated hypersensitivity to the pathogen Staphylococcus aureus, an effect that was rescued by Mn feeding or knockdown of the Golgi calcium/manganese ATPase, pmr-1, indicating that Mn uptake is essential for the innate immune system. This reversal of pathogen sensitivity by Mn feeding suggests a protective and therapeutic role of Mn in pathogen evasion systems. We propose that the C. elegans intestinal lumen may mimic the mammalian macrophage phagosome and thus could be a simple model for studying Mn-mediated innate immunity.


Molecules and Cells | 2011

Differential Physiological Roles of ESCRT Complexes in Caenorhabditis elegans

Dong-Wan Kim; Hyun Sung; Donghyuk Shin; Haihong Shen; Joohong Ahnn; Sun-Kyung Lee; Sangho Lee

Endosomal sorting complex required for transport (ESCRT) complexes are involved in endosomal trafficking to the lysosome, cytokinesis, and viral budding. Extensive genetic, biochemical, and structural studies on the ESCRT system have been carried out in yeast and mammalian systems. However, the question of how the ESCRT system functions at the whole organism level has not been fully explored. In C. elegans, we performed RNAi experiments to knock-down gene expression of components of the ESCRT system and profiled their effects on protein degradation and endocytosis of YP170, a yolk protein. Targeted RNAi knock-down of ESCRT-I (tsg-101 and vps-28) and ESCRT-III (vps-24, and vps-32.2) components interfered with protein degradation while knock-down of ESCRT-II (vps-25 and vps-36) and ESCRT-III (vps-20 and vps-24) components hampered endocytosis. In contrast, the knockdown of vps-37, another ESCRT-I component, showed no defect in either YP170 uptake or degradation. Depletion of at least one component from each complex — ESCRT-0 (hgrs-1), ESCRT-I (tsg-101, vps-28, and vps-37), ESCRT-II (vps-36), ESCRT-III (vps-24), and Vps4 (vps-4) — resulted in abnormal distribution of embryos in the uterus of worms, possibly due to abnormal ovulation, fertilization, and egglaying. These results suggest differential physiological roles of ESCRT-0, -I, -II, and -III complexes in the context of the whole organism, C. elegans.


Molecules and Cells | 2012

Two thioredoxin reductases, trxr-1 and trxr-2, have differential physiological roles in Caenorhabditis elegans

Weixun Li; Jaya Bandyopadhyay; Hyun Sook Hwaang; Byung-Jae Park; Jeong Hoon Cho; Jin Il Lee; Joohong Ahnn; Sun-Kyung Lee

Thioredoxin reductase (TrxR) is a member of the pyridine nucleotide-disulfide reductase family, which mainly functions in the thioredoxin system. TrxR is found in all living organisms and exists in two major ubiquitous isoenzymes in higher eukaryotic cells; One is cytosolic and the other mitochondrial. Mitochondrial TrxR functions to protect mitochondria from oxidative stress, where reactive oxidative species are mainly generated, while cytosolic TrxR plays a role to maintain optimal oxido-reductive status in cytosol. In this study, we report differential physiological functions of these two TrxRs in C. elegans. trxr-1, the cytosolic TrxR, is highly expressed in pharynx, vulva and intestine, whereas trxr-2, the mitochondrial TrxR, is mainly expressed in pharyngeal and body wall muscles. Deficiency of the non-selenoprotein trxr-2 caused defects in longevity and delayed development under stress conditions, while deletion mutation of the selenoprotein trxr-1 resulted in interference in acidification of lysosomal compartment in intestine. Interestingly, the acidification defect of trxr-1(jh143) deletion mutant was rescued, not only by selenocystein-containing wild type TRXR-1, but also cysteine-substituted mutant TRXR-1. Both trxr-1 and trxr-2 were up-regulated when worms were challenged by environmental stress such as heat shock. These results suggest that trxr-1 and trxr-2 function differently at organismal level presumably by their differential sub-cellular localization in C. elegans.

Collaboration


Dive into the Joohong Ahnn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byung-Jae Park

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Do Han Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyun-Ok Song

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunki Lim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge