Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joohun Ha is active.

Publication


Featured researches published by Joohun Ha.


Nature Medicine | 2004

Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase

Min-Seon Kim; Joong-Yeol Park; Cherl Namkoong; Pil-Geum Jang; Jewon Ryu; Hai-Sun Song; Jiyoung Yun; Il-Seong Nam-Goong; Joohun Ha; In Sun Park; In-Kyu Lee; Benoit Viollet; Jang H. Youn; Hong-Kyu Lee; Ki-Up Lee

AMP-activated protein kinase (AMPK) functions as a fuel sensor in the cell and is activated when cellular energy is depleted. Here we report that α-lipoic acid (α-LA), a cofactor of mitochondrial enzymes, decreases hypothalamic AMPK activity and causes profound weight loss in rodents by reducing food intake and enhancing energy expenditure. Activation of hypothalamic AMPK reverses the effects of α-LA on food intake and energy expenditure. Intracerebroventricular (i.c.v.) administration of glucose decreases hypothalamic AMPK activity, whereas inhibition of intracellular glucose utilization through the administration of 2-deoxyglucose increases hypothalamic AMPK activity and food intake. The 2-deoxyglucose-induced hyperphagia is reversed by inhibiting hypothalamic AMPK. Our findings indicate that hypothalamic AMPK is important in the central regulation of food intake and energy expenditure and that α-LA exerts anti-obesity effects by suppressing hypothalamic AMPK activity.NOTE: In the version of this article initially published online, the name of an author was misspelled. The name of the twelfth author should be “Benoit Viollet”. This error has been corrected for the HTML and print versions of the article


Diabetes | 2008

Metformin Inhibits Hepatic Gluconeogenesis Through AMP-Activated Protein Kinase–Dependent Regulation of the Orphan Nuclear Receptor SHP

Yong Deuk Kim; Keun-Gyu Park; Yong-Soo Lee; Yun-Yong Park; Don-Kyu Kim; Balachandar Nedumaran; Won Gu Jang; Won-Jea Cho; Joohun Ha; In-Kyu Lee; Chul-Ho Lee; Hueng-Sik Choi

OBJECTIVE—Metformin is an antidiabetic drug commonly used to treat type 2 diabetes. The aim of the study was to determine whether metformin regulates hepatic gluconeogenesis through the orphan nuclear receptor small heterodimer partner (SHP; NR0B2). RESEARCH DESIGN AND METHODS—We assessed the regulation of hepatic SHP gene expression by Northern blot analysis with metformin and adenovirus containing a constitutive active form of AMP-activated protein kinase (AMPK) (Ad-AMPK) and evaluated SHP, PEPCK, and G6Pase promoter activities via transient transfection assays in hepatocytes. Knockdown of SHP using siRNA SHP was conducted to characterize the metformin-induced inhibition of hepatic gluconeogenic gene expression in hepatocytes, and metformin–and adenovirus SHP (Ad-SHP)–mediated hepatic glucose production was measured in B6-Lepob/ob mice. RESULTS—Hepatic SHP gene expression was induced by metformin, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), and Ad-AMPK. Metformin-induced SHP gene expression was abolished by adenovirus containing the dominant negative form of AMPK (Ad-DN-AMPK), as well as by compound C. Metformin inhibited hepatocyte nuclear factor-4α–or FoxA2-mediated promoter activity of PEPCK and G6Pase, and the inhibition was blocked with siRNA SHP. Additionally, SHP knockdown by adenovirus containing siRNA SHP inhibited metformin-mediated repression of cAMP/dexamethasone-induced hepatic gluconeogenic gene expression. Furthermore, oral administration of metformin increased SHP mRNA levels in B6-Lepob/ob mice. Overexpression of SHP by Ad-SHP decreased blood glucose levels and hepatic gluconeogenic gene expression in B6-Lepob/ob mice. CONCLUSIONS—We have concluded that metformin inhibits hepatic gluconeogenesis through AMPK-dependent regulation of SHP.


Journal of Biological Chemistry | 2003

AMP-activated Protein Kinase Activity Is Critical for Hypoxia-inducible Factor-1 Transcriptional Activity and Its Target Gene Expression under Hypoxic Conditions in DU145 Cells

Minyoung Lee; Jin-Taek Hwang; Hye-Jeong Lee; Seung-Nam Jung; Insug Kang; Sung-Gil Chi; Sungsoo S. Kim; Joohun Ha

AMP-activated protein kinase (AMPK) functions as an energy sensor to provide metabolic adaptations under the ATP-deprived conditions such as hypoxia. In the present study, we considered a role of AMPK in the adaptive response to hypoxia by examining whether AMPK is involved in the regulation of hypoxia-inducible factor-1 (HIF-1), a heterodimeric transcription factor that is critical for hypoxic induction of physiologically important genes. We demonstrate that hypoxia or CoCl2 rapidly activated AMPK in DU145 human prostate cancer cells, and its activation preceded the induction of HIF-1α expression. Under these conditions, blockade of AMPK activity by a pharmacological or molecular approach significantly attenuated hypoxia-induced responses such as HIF-1 target gene expression, secretion of vascular endothelial growth factor, glucose uptake, and HIF-1-dependent reporter gene expression, indicating that AMPK is critical for the HIF-1 transcriptional activity and its target gene expression. Its functional requirement for HIF-1 activity was also demonstrated in several different cancer cell lines, but AMPK activation alone was not sufficient to stimulate the HIF-1 transcriptional activity. We further present data showing that AMPK transmits a positive signal for HIF-1 activity via a signaling pathway that is independent of phosphatidylinositol 3-kinase/AKT and several mitogen-activated protein kinases. Taken together, our results suggest that AMPK is a novel and critical component of HIF-1 regulation, implying its new roles in oxygen-regulated cellular phenomena.


Experimental and Molecular Medicine | 2007

Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase

Chang Eun Park; Min Jung Kim; Jong Hwa Lee; Byung-Il Min; Hyunsu Bae; Wonchae Choe; Sungsoo S. Kim; Joohun Ha

trans-Resveratrol (t-RVT), a naturally occurring polyphenol found in Polygonum cuspidatum, grape, and red wine, has been reported to have anti- inflammatory, cardioprotective, and cancer chemopreventive properties. However antidiabetic effect of t-RVT has not yet been reported. In this study, we show that t-RVT increases glucose uptake in C2C12 myotubes by activating AMP-activated protein kinase (AMPK), uncovering an antidiabetic potential of t-RVT for the first time. AMPK plays a central role in the regulation of glucose and lipid metabolism, and hence it is considered a novel therapeutic target for metabolic syndrome such as type 2 diabetes. t-RVT significantly induced glucose uptake in C2C12 cells, via AMPK activation, but not a phosphatidylinositol-3 kinase (PI-3 kinase) signal pathway. The induced glucose uptake was attenuated by pretreatment with a pharmacological inhibitor for AMPK, indicating that the effect of t-RVT primarily depends on AMPK activation. However, in the presence of insulin, t-RVT also potentiated the effect of insulin on glucose uptake via AMPK activation, which led to further activation of PI-3 kinase/Akt signal pathway.


Cancer Letters | 2003

Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells

Hyeon Ka; Hee-Juhn Park; Hyun-Ju Jung; Jongwon Choi; Kyu-Seok Cho; Joohun Ha; Kyung-Tae Lee

Cinnamaldehyde is an active compound isolated from the stem bark of Cinnamomum cassia, a traditional oriental medicinal herb, which has been shown to inhibit tumor cell proliferation. In this study, we investigated the effects of cinnamaldehyde on the cytotoxicity, induction of apoptosis and the putative pathways of its actions in human promyelocytic leukemia cells. Using apoptosis analysis, measurement of reactive oxygen species (ROS), and assessment of mitochondrial membrane potentials (DeltaPsim), we show that cinnamaldehyde is a potent inducer of apoptosis and that it transduces the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT) and cytochrome c release to the cytosol. ROS production, mitochondrial alteration, and subsequent apoptotic cell death in cinnamaldehyde-treated cells were blocked by the antioxidant N-acetylcystein. Taken together, our data indicate that cinnamaldehyde induces the ROS-mediated mitochondrial permeability transition and resultant cytochrome c release. This is the first report on the mechanism of the anticancer effect of cinnamaldehyde.


Journal of Biological Chemistry | 2005

Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma

Hee Yun; Minyoung Lee; Sungsoo S. Kim; Joohun Ha

The induction of proangiogenic cytokines such as vascular endothelial growth factor (VEGF) is a critical feature of tumor angiogenesis. In the present study, we examined the mechanisms of VEGF gene expression induced by glucose deprivation in cancer cells, a role of AMP-activated protein kinase (AMPK) in the process, and the signal transduction pathway. AMPK functions as an energy sensor to provide metabolic adaptation under ATP-depleting conditions such as hypoxia and nutritional deprivation. Here, we show that glucose deprivation leads to a significant increase in the mRNA level of VEGF, GLUT1, and PFKFB3 genes in several cancer cells via a hypoxia-inducible factor-1-independent mechanism, and we demonstrate an essential role of AMPK in these gene expressions. Our data suggest that VEGF mRNA induction by glucose deprivation is due to an increase in mRNA stability, and the AMPK activity is necessary and sufficient to confer the stability to VEGF mRNA. We further show that reactive oxygen species is involved in glucose deprivation-induced AMPK activity in DU145 human prostate carcinomas, and c-Jun amino-terminal kinase acts as an upstream component in AMPK activation cascades under these conditions. LKB1, which was recently identified as a direct upstream kinase of AMPK, was not detected in DU145 cells. In conclusion, our results demonstrate a novel and major role of AMPK in the post-transcriptional regulation of VEGF, further implying its potential role in tumor angiogenesis.


Carcinogenesis | 2008

Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells

Seung-Nam Jung; Woo Kyeom Yang; Joungmok Kim; Hak Su Kim; Eun Ju Kim; Hee Yun; Hyunsung Park; Sung Soo Kim; Wonchae Choe; Insug Kang; Joohun Ha

Hypoxia-inducible factor (HIF-1) plays a central role in the cellular adaptive response to hypoxic conditions, which are closely related to pathophysiological conditions, such as cancer. Although reactive oxygen species (ROS) have been implicated in the regulation of hypoxic and non-hypoxic induction of HIF-1 under various conditions, the role of ROS is quite controversial, and the mechanism underlying the HIF-1 regulation by ROS is not completely understood yet. Here, we investigated the biochemical mechanism for the ROS-induced HIF-1 by revealing a novel role of adenosine monophosphate-activated protein kinase (AMPK) and the upstream signal components. AMPK plays an essential role as energy-sensor under adenosine triphosphate-deprived conditions. Here we report that ROS induced by a direct application of H(2)O(2) and menadione to DU145 human prostate carcinoma resulted in accumulation of HIF-1alpha protein by attenuation of its degradation and activation of its transcriptional activity in an AMPK-dependent manner. By way of contrast, AMPK was required only for the transcriptional activity of HIF-1 under hypoxic condition, revealing a differential role of AMPK in these two stimuli. Furthermore, our data show that inhibition of AMPK enhances HIF-1alpha ubiquitination under ROS condition. Finally, we show that the regulation of HIF-1 by AMPK in response to ROS is under the control of c-Jun N-terminal kinase and Janus kinase 2 pathways. Collectively, our findings identify AMPK as a key determinant of HIF-1 functions in response to ROS and its possible role in the sophisticated HIF-1 regulatory mechanisms.


Neuroscience Letters | 2006

Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-α production through inhibition of PI 3-kinase/Akt and NF-κB activation in murine BV2 microglial cells

Jung Yeon Lee; Bong Sook Jhun; Young Taek Oh; Ju Hie Lee; Wonchae Choe; Hyung Hwan Baik; Joohun Ha; Kyung-Sik Yoon; Sung Soo Kim; Insug Kang

Adenosine is an endogenous nucleoside that regulates many processes, including inflammatory responses, through activation of its receptors. Adenosine receptors have been reported to be expressed in microglia, which are major immune cells of brain, yet little is known about the role of adenosine receptors in microglial cytokine production. Thus, we investigated the effect of adenosine and adenosine A3 receptor ligands on LPS-induced tumor necrosis factor (TNF-alpha) production and its molecular mechanism in mouse BV2 microglial cells. Adenosine and Cl-IB-MECA, a specific adenosine A3 receptor agonist, suppressed LPS-induced TNF-alpha protein and mRNA levels. Moreover, MRS1523, a selective A3 receptor antagonist, blocked suppressive effects of both adenosine and Cl-IB-MECA on TNF-alpha. We further examined the effect of adenosine on signaling molecules, such as PI 3-kinase, Akt, p38, ERK1/2, and NF-kappaB, which are involved in the regulation of inflammatory responses. Adenosine inhibited LPS-induced phosphatidylinositol (PI) 3-kinase activation and Akt phosphorylation, whereas it had no effect on the phosphorylation of p38 and ERK1/2. We also found that adenosine as well as Cl-IB-MECA inhibited LPS-induced NF-kappaB DNA binding and luciferase reporter activity. Taken together, these results suggest that adenosine A3 receptor activation suppresses TNF-alpha production by inhibiting PI 3-kinase/Akt and NF-kappaB activation in LPS-treated BV2 microglial cells.


Cancer Research | 2007

Overexpressed Cyclophilin A in Cancer Cells Renders Resistance to Hypoxia- and Cisplatin-Induced Cell Death

Kyu Jin Choi; Yu Ji Piao; Min Jin Lim; Jin Hwan Kim; Joohun Ha; Wonchae Choe; Sung Soo Kim

Cyclophilin A (CypA) has been reported to be overexpressed in cancer cells, especially in solid tumors. To determine the role of CypA in tumorigenesis, we investigated the induction of CypA as well as the role it plays in cancer cells. Here, we have shown that induction of CypA is associated with hypoxia in a variety of cells, including DU145 human prostate cancer cell line. Our analysis of the CypA promoter clearly showed that CypA up-regulation is mediated by hypoxia-inducible factor-1alpha transcription factor. Interestingly, overexpression of CypA prevented hypoxia- and cisplatin-induced apoptosis, and this was associated with the suppression of reactive oxygen species generation and depolarization of mitochondrial membrane potential, whereas small interfering RNA-based CypA knockdown aggravated these factors. These results suggest that CypA is important in tumorigenesis, especially in tumor apoptosis.


The FASEB Journal | 2002

Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity

Feng Hong; Jinhwa Lee; Jae-Woo Song; Su Jae Lee; Heekyung Ahn; Jeong Je Cho; Joohun Ha; Sung Soo Kim

Allogenic myoblast transplantation (AMT) is under investigation for treatment of severe genetic myopathies. Data regarding the role of cyclosporine (CsA) and FK‐506 in AMT have shown that CsA is less effective than FK‐506. For this study, we investigated mechanisms of CsA toxicity during AMT and showed that a high level of reactive oxygen species (ROS) generated by CsA, mediated partly by inhibition of the peptidylprolyl‐cis‐trans‐isomerase (PPIase)‐like activity of cyclophilin A (CypA), blocked differentiation and induced apoptosis at an early stage of muscle differentiation. Inhibition of the PPIase‐like activity of CypA alone also blocked muscle differentiation. However, CsA toxicity did not depend on the inhibition of calcineurin activity during muscle differentiation. Together, these data suggest that CsA‐mediated inhibition of the PPIase‐like activity of CypA and the high level of ROS generation contributed to the low efficacy of CsA in AMT. In addition, we showed that a reduction of oxidative stress protected cells from CsA‐induced apoptosis, and myoblasts that had survived after preexposure to CsA not only proliferated and differentiated reversibly but also gained resistance to subsequent CsA exposure. Thus, administration of antioxidants or overexpression of CypA either exogenously or endogenously during CsA treatment has the potential to improve the success of this treatment in AMT.

Collaboration


Dive into the Joohun Ha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hee Yun

Kyung Hee University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge