Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joon Ching Juan is active.

Publication


Featured researches published by Joon Ching Juan.


Water Research | 2016

Recent developments of zinc oxide based photocatalyst in water treatment technology: A review.

Kian Mun Lee; Chin Wei Lai; Koh Sing Ngai; Joon Ching Juan

Today, a major issue about water pollution is the residual dyes from different sources (e.g., textile industries, paper and pulp industries, dye and dye intermediates industries, pharmaceutical industries, tannery and craft bleaching industries, etc.), and a wide variety of persistent organic pollutants have been introduced into our natural water resources or wastewater treatment systems. In fact, it is highly toxic and hazardous to the living organism; thus, the removal of these organic contaminants prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade those organic contaminants and advanced heterogeneous photocatalysis involving zinc oxide (ZnO) photocatalyst appears to be one of the most promising technology. In recent years, ZnO photocatalyst have attracted much attention due to their extraordinary characteristics. The high efficiency of ZnO photocatalyst in heterogeneous photocatalysis reaction requires a suitable architecture that minimizes electron loss during excitation state and maximizes photon absorption. In order to further improve the immigration of photo-induced charge carriers during excitation state, considerable effort has to be exerted to further improve the heterogeneous photocatalysis under UV/visible/solar illumination. Lately, interesting and unique features of metal doping or binary oxide photocatalyst system have gained much attention and became favourite research matter among various groups of scientists. It was noted that the properties of this metal doping or binary oxide photocatalyst system primarily depend on the nature of the preparation method and the role of optimum dopants content incorporated into the ZnO photocatalyst. Therefore, this paper presents a critical review of recent achievements in the modification of ZnO photocatalyst for organic contaminants degradation.


Bioresource Technology | 2011

Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: An overview

Joon Ching Juan; Damayani Agung Kartika; Ta Yeong Wu; Taufiq-Yap Yun Hin

Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.


Bioresource Technology | 2015

Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae

Wai Yan Cheah; Pau Loke Show; Jo Shu Chang; Tau Chuan Ling; Joon Ching Juan

The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.


Bioresource Technology | 2017

Microalgae biorefinery: High value products perspectives

Kit Wayne Chew; Jing Ying Yap; Pau Loke Show; Ng Hui Suan; Joon Ching Juan; Tau Chuan Ling; Duu-Jong Lee; Jo Shu Chang

Microalgae have received much interest as a biofuel feedstock in response to the uprising energy crisis, climate change and depletion of natural sources. Development of microalgal biofuels from microalgae does not satisfy the economic feasibility of overwhelming capital investments and operations. Hence, high-value co-products have been produced through the extraction of a fraction of algae to improve the economics of a microalgae biorefinery. Examples of these high-value products are pigments, proteins, lipids, carbohydrates, vitamins and anti-oxidants, with applications in cosmetics, nutritional and pharmaceuticals industries. To promote the sustainability of this process, an innovative microalgae biorefinery structure is implemented through the production of multiple products in the form of high value products and biofuel. This review presents the current challenges in the extraction of high value products from microalgae and its integration in the biorefinery. The economic potential assessment of microalgae biorefinery was evaluated to highlight the feasibility of the process.


Ionics | 2016

A review of polymer electrolytes: fundamental, approaches and applications

Koh Sing Ngai; S. Ramesh; K. Ramesh; Joon Ching Juan

In this paper, we review different types of polymer electrolytes, recent approaches and technological applications of polymer electrolytes. The report first discusses the characteristics, advantages and applications for three types of polymer electrolytes: gel polymer electrolytes, solid polymer electrolytes and composite polymer electrolytes. Next, we discuss the features and performance of different polymer hosts based on some important and recently published literature. Recent progress of some approaches used in improving the performance of the polymer electrolytes is highlighted. The last part of the review includes the technological applications of some electrical energy storing/converting devices: electrochemical capacitors, batteries, fuel cells and dye-sensitized solar cells. It is also stressed that the technological advancement in the polymer electrolytes plays a pivotal role in the development of energy storing/converting systems.


Carbohydrate Polymers | 2016

Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans

You Wei Chen; Hwei Voon Lee; Joon Ching Juan; Siew-Moi Phang

Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material.


Bioresource Technology | 2016

Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production

Wai Yan Cheah; Tau Chuan Ling; Joon Ching Juan; Duu-Jong Lee; Jo Shu Chang; Pau Loke Show

Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.


RSC Advances | 2016

Enzymatic transesterification for biodiesel production: a comprehensive review

B. Norjannah; Hwai Chyuan Ong; H.H. Masjuki; Joon Ching Juan; W.T. Chong

Biodiesel is a type of renewable fuel and a potential alternative for continuously consumed fossil resources. Currently, the method applied for biodiesel production is transesterification which is divided into non-catalyzed reaction, chemical-catalyzed reaction and enzymatic reaction. Enzymatic reaction is more advantageous than the other methods because of its mild reaction conditions, easy product recovery, no wastewater generation, no saponification and higher quality of products. The main component in this reaction is an enzyme called lipase which can catalyze wide variety of substrate including free fatty acids. Two other main raw materials for biodiesel synthesis are oil and acyl acceptor such as alcohol. Biodiesel catalyzed by enzyme is affected by many factors such as lipase specificity, lipase immobilization, oil composition and purity, oil to acyl acceptor molar ratio, acyl acceptors, temperature, and water content. Many methods have been tested to manipulate these factors and improve the enzymatic reaction for biodiesel production. These methods include combination of lipases, enzyme pretreatment, enzyme post treatment, methanol addition technique, use of solvent and silica gel, and reactor design. This paper will critically discuss the three major components of enzymatic production of biodiesel and the methods used to improve enzymatic reaction, as well as a review on its economic evaluation and industrial scale production.


International Journal of Photoenergy | 2014

An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation

Chin Wei Lai; Joon Ching Juan; Weon Bae Ko; Sharifah Bee Abd Hamid

Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2) appears to be the most promising technology. In recent years, TiO2 nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2 nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.


RSC Advances | 2015

Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine

Emy Marlina Samsudin; Sharifah Bee Abd Hamid; Joon Ching Juan; Wan Jefrey Basirun; Ahmad Esmaielzadeh Kandjani; Suresh K. Bhargava

Introducing defects into the intrinsic TiO2 structural framework with nitrogen enhanced the photocatalytic response towards the degradation of atrazine, as compared to undoped TiO2. Both catalysts, which were prepared in an analogous manner, demonstrated high crystallinity and anatase phase dominant with well defined {101} facets, which serves as a pioneer platform for good photocatalytic activity. The introduction of nitrogen increased the stability of the crystal structure which leads to the formation of pure active anatase phase. Although the optical response was shifted towards the visible region, initiated by the formation of new absorption defects and interstate energy levels, the chemical state of nitrogen in the doped TiO2 controls the overall catalyst photoreactivity. In this study, it was found that the surface area and degree of band gap reduction played a lesser role for photocatalysis enhancement, although they partly contributed, than the concentration of surface charge traps and the type of structural framework formed during nitrogen incorporation. The enhancement in the photocatalytic degradation of atrazine clearly was influenced by the loading and nature of the nitrogen dopant, which in turn, governed the types of chemical and optical properties of the final catalyst product.

Collaboration


Dive into the Joon Ching Juan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pau Loke Show

University of Nottingham Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jo Shu Chang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Mohd Ambar Yarmo

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge