Joon-Hee Han
Kangwon National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joon-Hee Han.
Plant Pathology Journal | 2015
Joon-Hee Han; Hong-Sik Shim; Jong-Hwan Shin; Kyoung Su Kim
Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous plant species. Anthracnose control with fungicides has both human health and environmental safety implications. Despite increasing public concerns, fungicide use will continue in the absence of viable alternatives. There have been relatively less efforts to search antagonistic bacteria from mudflats harboring microbial diversity. A total of 420 bacterial strains were isolated from mudflats near the western sea of South Korea. Five bacterial strains, LB01, LB14, HM03, HM17, and LB15, were characterized as having antifungal properties in the presence of C. acutatum and C. gloeosporioides. The three Bacillus atrophaeus strains, LB14, HM03, and HM17, produced large quantities of chitinase and protease enzymes, whereas the B. amyloliquefaciens strain LB01 produced protease and cellulase enzymes. Two important antagonistic traits, siderophore production and solubilization of insoluble phosphate, were observed in the three B. atrophaeus strains. Analyses of disease suppression revealed that LB14 was most effective for suppressing the incidence of anthracnose symptoms on pepper fruits. LB14 produced antagonistic compounds and suppressed conidial germination of C. acutatum and C. gloeosporioides. The results from the present study will provide a basis for developing a reliable alternative to fungicides for anthracnose control.
Fungal Genetics and Biology | 2014
Hyo-Jung Kim; Joon-Hee Han; Kyoung Su Kim; Yong-Hwan Lee
The ascomycete fungus Magnaporthe oryzae is an economically important pathogen that causes rice blast disease worldwide. Accumulating evidence indicates that the fungal velvet genes are key regulators of a number of cellular processes, including development, pathogenicity and secondary metabolism, in many species of fungi. In this study, we identified and functionally characterized four genes (MoVOSA, MoVELB, MoVEA, and MoVELC) from the genome of the fungal pathogen M. oryzae. These genes were homologous to the velvet gene family of Aspergillus nidulans. Deletions of MoVEA, MoVELB, and MoVELC resulted in a significant decrease in conidiation, indicating their roles as positive regulators thereof. The MoVELC gene was involved in development of conidial morphology, while MoVELB and MoVEA appeared necessary for conidial germination, MoVEA further being indispensable for appressorial development and modulation of reactive oxygen species in disease development. Deletion of MoVELC affected the cell wall integrity of appressoria, resulting in failure to penetrate host cells. Unexpectedly, MoVOSA appeared dispensable for the development and pathogenicity of M. oryzae, even though its homologs play specific roles in other fungal species. Taken together, our data demonstrate that the velvet genes are linked to M. oryzae infection-related development and pathogenicity, and the findings provide a framework for comparative studies of the conserved velvet gene family across a range of fungal taxa, which may provide new insight into fungal development and pathogenicity.
Plant Pathology Journal | 2014
Jong-Hwan Shin; Joon-Hee Han; Ju Kyong Lee; Kyoung Su Kim
Maize is a socioeconomically important crop in many countries. Recently, a high incidence of stalk rot disease has been reported in several maize fields in Gangwon province. In this report, we show that maize stalk rot is associated with the fungal pathogens Fusarium subglutinans and F. temperatum. Since no fungicides are available to control these pathogens on maize plants, we selected six fungicides (tebuconazole, difenoconazole, fluquinconazole, azoxystrobin, prochloraz and kresoxim-methyl) and examined their effectiveness against the two pathogens. The in vitro antifungal effects of the six fungicides on mycelial growth and colony formation were investigated. Based on the inhibition of mycelial growth, the most toxic fungicide was tebuconazole with 50% effective concentrations (EC50) of <0.1 μg/ml and EC90 values of 0.9 μg/ml for both pathogens, while the least toxic fungicide was azoxystrobin with EC50 values of 0.7 and 0.5 μg/ml for F. subglutinans and F. temperatum, respectively, and EC90 values of >3,000 μg/ml for both pathogens. Based on the inhibition of colony formation by the two pathogens, kresoxim-methyl was the most toxic fungicide with complete inhibition of colony formation at concentrations of 0.1 and 0.01 μg/ml for F. subglutinans and F. temperatum, respectively, whereas azoxystrobin was the least toxic fungicide with complete inhibition of colony formation at concentrations >3,000 μg/ml for both pathogens.
Genomics data | 2016
Joon-Hee Han; JaeKyung Chon; Jong-Hwa Ahn; Ik-Young Choi; Yong-Hwan Lee; Kyoung Su Kim
Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.
Mitochondrial DNA | 2016
Joon-Oh Kim; Ki-Young Choi; Joon-Hee Han; Ik-Young Choi; Yong-Hwan Lee; Kyoung Su Kim
Abstract Collectotrichum acutatum is a fungal plant pathogen that causes pre- and post-harvest anthracnose on a wide range of plants worldwide. The complete mitochondrial genome of C. acutatum has been determined for the first time. This study revealed that the mitogenome of C. acutatum is a closed circular molecule of 30 892 bp in length, with a G + C content of 34.7%, which include 15 protein-coding genes, 22 tRNA genes, and two rRNA genes. All the protein-coding genes, accounting for 46.6% of the C. acutatum mitogenome, start with the standard ATG codon and end with the TAA termination codon except for nad6 gene using the TAG termination codon. The mitogenome information of C. acutatum can provide molecular basis for further studies on molecular systematics and evolutionary dynamics.
The Korean Journal of Mycology | 2013
Gun-Joo Lee; Joon-Hee Han; Jong-Hwan Shin; Heung Tae Kim; Kyoung Su Kim
Phytophthora capsici is one of major limiting factors in production of pepper and other important crops worldwide by causing foliage blight and rot on fruit and root. Increased demand for the replacement of fungicides has led to searching a promising strategy to control the fungal diseases. To meet eco-friendly agriculture practice, we isolated microorganisms and assessed their beneficial effects on plant health and disease control efficacy. A total of 360 bacterial strains were isolated from rhizosphere soil of healthy pepper plants, and categorized to 5 representative isolates based on colony morphology. Among the 5 bacterial strains (GJ-1, GJ-4, GJ-5, GJ-11, GJ-12), three bacterial strains (GJ-1, GJ-11, GJ-12) presented antifungal activity against P. capsici in an fungal inhibition assay. In phosphate solubilization and siderophore production, the strain GJ-1 was more effective than others. The strain GJ-1 was identified as Bacillus sp. using 16S rDNA analysis. Bacillus sp. GJ-1 was also found to be effective in inhibiting other plant pathogenic fungi, including Rhizoctonia solani, Pythium ultimum and Fusarium solani. Therefore, the Bacillus sp. GJ-1 can serve as a biological control agent against fungal plant pathogens.
Research in Plant Disease | 2015
Joon-Hee Han; Gi-Chang Park; Joon-Oh Kim; and Kyoung Su Kim
Maize (Zea mays L.) is an economically important crop in worldwide. While the consumption of the maize is steadily increasing, the yield is decreasing due to continuous mono-cultivation and infection of soil-borne fungal pathogens such as Fusarium species. Recently, stalk rot disease in maize, caused by F. subglutinans and F. temperatum has been reported in Korea. In this study, we isolated bacterial isolates in rhizosphere soil of maize and subsequently tested for antagonistic activities against F. subglutinans and F. temperatum. A total of 1,357 bacterial strains were isolated from rhizosphere. Among them three bacterial isolates (GC02, GC07, GC08) were selected, based on antagonistic effects against Fusarium species. The isolates GC02 and GC07 were most efficient in inhibiting the mycelium growth of the pathogens. The three isolates GC02, GC07 and GC08 were identified as Bacillus methylotrophicus, B. amyloliquefaciens and B. thuringiensis using 16S rRNA sequence analysis, respectively. GC02 and GC07 bacterial suspensions were able to suppress over 80% conidial germination of the pathogens. GC02, GC07 and GC08 were capable of producing large quantities of protease enzymes, whereas the isolates GC07 and GC08 produced cellulase enzymes. The isolates GC02 and GC07 were more efficient in phosphate solubilization and siderophore production than GC08. Analysis of disease suppression revealed that GC07 was most effective in suppressing the disease development of stalk rot. It was also found that B. methylotrophicus GC02 and B. amyloliquefaciens GC07 have an ability to inhibit the growth of other plant pathogenic fungi. This study indicated B. methylotrophicus GC02 and B. amyloliquefaciens GC07 has potential for being used for the development of a biological control agent.
Scientific Reports | 2018
Joon-Hee Han; Jong-Hwan Shin; Yong-Hwan Lee; Kyoung Su Kim
Members of the Yippee-like (YPEL) gene family are highly conserved in eukaryotes and are homologous to the Drosophila yippee gene. In this study, we functionally characterized two YPEL-homologous genes, MoYPEL1 and MoYPEL2, in the rice blast pathogen Magnaporthe oryzae using the deletion mutants ΔMoypel1, ΔMoypel2, and ΔΔMoypel1,2. The MoYPEL1 deletion mutant was significantly defective in conidiation and unable to undergo appressorium development; however, deletion of MoYPEL2 resulted in a significant increase in conidiation and the abnormal development of two appressoria per conidium. These data demonstrate the opposite roles of each member of the YPEL gene family during the development of M. oryzae. The double mutant was phenotypically similar to the ΔMoypel1 mutant in conidiation, but similar to the ΔMoypel2 mutant in appressorium development. Subcellular localization of the MoYPEL1 protein was dynamic during appressorium development, while the MoYPEL2 protein consistently localized within the nuclei during developmental stages. Our studies indicate that the two YPEL gene family members play distinct roles in the developmental stages of M. oryzae, furthering our understanding of disease dissemination and development in fungi.
Mycobiology | 2017
Joon-Hee Han; Gi-Chang Park; Kyoung Su Kim
Abstract Cylindrocarpon destructans is an ascomycete soil-borne pathogen that causes ginseng root rot. To identify effective biocontrol agents, we isolated several bacteria from ginseng cultivation soil and evaluated their antifungal activity. Among the isolated bacteria, one isolate (named JH7) was selected for its high antibiotic activity and was further examined for antagonism against fungal pathogens. Strain JH7 was identified as a Chromobacterium sp. using phylogenetic analysis based on 16S rRNA gene sequences. This strain was shown to produce antimicrobial molecules, including chitinases and proteases, but not cellulases. Additionally, the ability of JH7 to produce siderophore and solubilize insoluble phosphate supports its antagonistic and beneficial traits for plant growth. The JH7 strain suppressed the conidiation, conidial germination, and chlamydospore formation of C. destructans. Furthermore, the JH7 strain inhibited other plant pathogenic fungi. Thus, it provides a basis for developing a biocontrol agent for ginseng cultivation.
Genes & Genomics | 2014
Jong-Hwan Shin; Joon-Hee Han; Kyoung Su Kim
Transcriptional regulation is a complex process mediated by coordinated assembly complexes to ensure temporal and spatial gene expression. The AT-hook is a DNA-binding motif originally described in the high mobility group A of non-histone chromatin components. The AT-hook proteins bind to the minor groove of adenine–thymine (AT) rich regions of DNA and act as transcriptional cofactors coordinating nucleoproteins during transcriptional regulation. In this study, a genome-wide in silico analysis of AT-hook proteins was performed on the ascomycete plant pathogenic fungus, Magnaporthe oryzae. Quantitative real-time RT-PCR analysis revealed differential expression patterns of MoATH genes during development and plant infection. To increase our understanding of the functional role of AT-hook proteins in M. oryzae development and pathogenicity, a deletion mutant of MoATH10 was functionally characterized. Targeted deletion of MoATH10 significantly increased pigmentation and conidiation, indicating that MoATH10 is negatively involved in the regulation of pigmentation and conidiation in M. oryzae. Pathogenicity assays revealed that the ΔMoath10 mutant was less virulent. The reduced disease development of the ΔMoath10 mutant was due to a partial defect in invasive growth inside plant cells, but not appressorium-mediated penetration. These results suggest that MoATH10 is important for growth, development, and virulence in M. oryzae.