Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joon Jung is active.

Publication


Featured researches published by Joon Jung.


Bioorganic & Medicinal Chemistry Letters | 2008

Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2)

Joey L. Methot; Prasun K. Chakravarty; Melissa Chenard; Joshua Close; Jonathan C. Cruz; William K. Dahlberg; Judith C. Fleming; Christopher Hamblett; Julie E. Hamill; Paul Harrington; Andreas Harsch; Richard Heidebrecht; Bethany Hughes; Joon Jung; Candia M. Kenific; Astrid M. Kral; Peter T. Meinke; Richard E. Middleton; Nicole Ozerova; David L. Sloman; Matthew G. Stanton; Alexander A. Szewczak; Sriram Tyagarajan; David J. Witter; J. Paul Secrist; Thomas A. Miller

We report herein the initial exploration of novel selective HDAC1/HDAC2 inhibitors (SHI-1:2). Optimized SHI-1:2 structures exhibit enhanced intrinsic activity against HDAC1 and HDAC2, and are greater than 100-fold selective versus other HDACs, including HDAC3. Based on the SAR of these agents and our current understanding of the HDAC active site, we postulate that the SHI-1:2 extend the existing HDAC inhibitor pharmacophore to include an internal binding domain.


Bioorganic & Medicinal Chemistry Letters | 2010

Piperazinyl pyrimidine derivatives as potent γ-secretase modulators

Alexey Rivkin; Sean P. Ahearn; Stephanie M. Chichetti; Yoona R. Kim; Chaomin Li; Andrew Rosenau; Sam Kattar; Joon Jung; Sanjiv Shah; Bethany Hughes; Jamie L. Crispino; Richard E. Middleton; Alexander A. Szewczak; Benito Munoz; Mark S. Shearman

The development of a novel series of piperazinyl pyrimidines as gamma-secretase modulators for potential use in the treatment of Alzheimers disease is disclosed herein. Optimization of a screening hit provided a series of potent gamma-secretase modulators with >180-fold in vitro selectivity over inhibition of Notch cleavage.


Journal of Biological Chemistry | 2010

Discovery of PDK1 Kinase Inhibitors with a Novel Mechanism of Action by Ultrahigh Throughput Screening

Ekaterina V. Bobkova; Michael Weber; Zangwei Xu; Yan-Ling Zhang; Joon Jung; Peter Blume-Jensen; Alan B. Northrup; Priya Kunapuli; Jannik N. Andersen; Ilona Kariv

The phosphoinositide 3-kinase/AKT signaling pathway plays a key role in cancer cell growth, survival, and angiogenesis. Phosphoinositide-dependent protein kinase-1 (PDK1) acts at a focal point in this pathway immediately downstream of phosphoinositide 3-kinase and PTEN, where it phosphorylates numerous AGC kinases. The PDK1 kinase domain has at least three ligand-binding sites: the ATP-binding pocket, the peptide substrate-binding site, and a groove in the N-terminal lobe that binds the C-terminal hydrophobic motif of its kinase substrates. Based on the unique PDK1 substrate recognition system, ultrahigh throughput TR-FRET and Alphascreen® screening assays were developed using a biotinylated version of the PDK1-tide substrate containing the activation loop of AKT fused to a pseudo-activated hydrophobic motif peptide. Using full-length PDK1, Km values were determined as 5.6 μm for ATP and 40 nm for the fusion peptide, revealing 50-fold higher affinity compared with the classical AKT(Thr-308)-tide. Kinetic and biophysical studies confirmed the PDK1 catalytic mechanism as a rapid equilibrium random bireactant reaction. Following an ultrahigh throughput screen of a large library, 2,000 compounds were selected from the reconfirmed hits by computational analysis with a focus on novel scaffolds. ATP-competitive hits were deconvoluted by dose-response studies at 1× and 10× Km concentrations of ATP, and specificity of binding was assessed in thermal shift assay. Inhibition studies using fusion PDK1-tide1 substrate versus AKT(Thr-308)-tide and kinase selectivity profiling revealed a novel selective alkaloid scaffold that evidently binds to the PDK1-interacting fragment pocket. Molecular modeling suggests a structural paradigm for the design of inhibitory versus activating allosteric ligands of PDK1.


Bioorganic & Medicinal Chemistry Letters | 2010

Purine derivatives as potent γ-secretase modulators

Alexey Rivkin; Sean P. Ahearn; Stephanie M. Chichetti; Christopher Hamblett; Yudith Garcia; Michelle Martinez; Jed L. Hubbs; Michael H. Reutershan; Matthew H. Daniels; Phieng Siliphaivanh; Karin M. Otte; Chaomin Li; Andrew Rosenau; Laura Surdi; Joon Jung; Bethany Hughes; Jamie L. Crispino; George Nikov; Richard E. Middleton; Christopher M. Moxham; Alexander A. Szewczak; Sanjiv Shah; Lily Y. Moy; Candia M. Kenific; Flobert Tanga; Jonathan C. Cruz; Paula Andrade; Minilik Angagaw; Nirah H. Shomer; Thomas A. Miller

The development of a novel series of purines as gamma-secretase modulators for potential use in the treatment of Alzheimers disease is disclosed herein. Optimization of a previously disclosed pyrimidine series afforded a series of potent purine-based gamma-secretase modulators with 300- to 2000-fold in vitro selectivity over inhibition of Notch cleavage and that selectively reduces Alphabeta42 in an APP-YAC transgenic mouse model.


Bioorganic & Medicinal Chemistry Letters | 2008

SAR profiles of spirocyclic nicotinamide derived selective HDAC1/HDAC2 inhibitors (SHI-1:2)

Joey L. Methot; Christopher Hamblett; Dawn M. Mampreian; Joon Jung; Andreas Harsch; Alexander A. Szewczak; William K. Dahlberg; Richard E. Middleton; Bethany Hughes; Judith C. Fleming; Hongmei Wang; Astrid M. Kral; Nicole Ozerova; Jonathan C. Cruz; Brian B. Haines; Melissa Chenard; Candia M. Kenific; J. Paul Secrist; Thomas A. Miller

A potent family of spirocyclic nicotinyl aminobenzamide selective HDAC1/HDAC2 inhibitors (SHI-1:2) is profiled. The incorporation of a biaryl zinc-binding motif into a nicotinyl scaffold resulted in enhanced potency and selectivity versus HDAC3, but also imparted hERG activity. It was discovered that increasing polar surface area about the spirocycle attenuates this liability. Compound 12 induced a 4-fold increase in acetylated histone H2B in an HCT-116 xenograft model study with acute exposure, and inhibited tumor growth in a 21-day efficacy study with qd dosing.


Bioorganic & Medicinal Chemistry Letters | 2010

Piperidine-based heterocyclic oxalyl amides as potent p38α MAP kinase inhibitors

Babu J. Mavunkel; John J. Perumattam; Xuefei Tan; Gregory R. Luedtke; Qing Lu; Don Lim; Darin Kizer; Sundeep Dugar; Sarvajit Chakravarty; Yong-jin Xu; Joon Jung; Albert Liclican; Daniel E. Levy; Jocelyn Tabora

The design and synthesis of a new class of p38alpha MAP kinase inhibitors based on 4-fluorobenzylpiperidine heterocyclic oxalyl amides are described. Many of these compounds showed low-nanomolar activities in p38alpha enzymatic and cell-based cytokine TNFalpha production inhibition assays. The optimal linkers between the piperidine and the oxalyl amide were found to be [6,5] fused ring heterocycles. Substituted indoles and azaindoles were favored structural motifs in the cellular assay.


Bioorganic & Medicinal Chemistry Letters | 2010

The discovery of tricyclic pyridone JAK2 inhibitors. Part 1: hit to lead.

Tony Siu; Ekaterina Kozina; Joon Jung; Craig Rosenstein; Anjili Mathur; Michael D. Altman; Grace Chan; Lin Xu; Eric Bachman; Jan-Rung Mo; Melaney Bouthillette; Thomas S. Rush; Christopher J. Dinsmore; C. Gary Marshall; Jonathan R. Young

This paper describes the discovery and design of a novel class of JAK2 inhibitors. Furthermore, we detail the optimization of a screening hit using ligand binding efficiency and log D. These efforts led to the identification of compound 41, which demonstrates in vivo activity in our study.


Biochemistry | 2014

Divergent Kinetics Differentiate the Mechanism of Action of Two HDAC Inhibitors

Astrid M. Kral; Nicole Ozerova; Joshua Close; Joon Jung; Melissa Chenard; Judith C. Fleming; Brian B. Haines; Paul Harrington; John Maclean; Thomas A. Miller; Paul Secrist; Hongmei Wang; Richard Heidebrecht

Histone deacetylases (HDACs) play diverse roles in many diseases including cancer, sarcopenia, and Alzheimers. Different isoforms of HDACs appear to play disparate roles in the cell and are associated with specific diseases; as such, a substantial effort has been made to develop isoform-selective HDAC inhibitors. Our group focused on developing HDAC1/HDAC2-specific inhibitors as a cancer therapeutic. In the course of characterizing the mechanism of inhibition of a novel HDAC1/2-selective inhibitor, it was determined that it did not exhibit classical Michaelis-Menten kinetic behavior; this result is in contrast to the seminal HDAC inhibitor SAHA. Enzymatic assays, along with a newly developed binding assay, were used to determine the rates of binding and the affinities of both the HDAC1/2-selective inhibitor and SAHA. The mechanism of action studies identified a potential conformational change required for optimal binding by the selective inhibitor. A model of this putative conformational change is proposed.


Journal of Medicinal Chemistry | 2016

Discovery of 1-(1H-Pyrazolo[4,3-c]pyridin-6-yl)urea Inhibitors of Extracellular Signal-Regulated Kinase (ERK) for the Treatment of Cancers

Jongwon Lim; Elizabeth Helen Kelley; Joey L. Methot; Hua Zhou; Alessia Petrocchi; Hongmin Chen; Susan E. Hill; Marlene C. Hinton; Alan Hruza; Joon Jung; John Maclean; My Mansueto; George N. Naumov; Ulrike Philippar; Shruti Raut; Peter Spacciapoli; Dongyu Sun; Phieng Siliphaivanh

The ERK/MAPK pathway plays a central role in the regulation of critical cellular processes and is activated in more than 30% of human cancers. Specific BRAF and MEK inhibitors have shown clinical efficacy in patients for the treatment of BRAF-mutant melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the ERK signal pathway. Acquired resistance to these agents has led to greater interest in ERK, a downstream target of the MAPK pathway. De novo design efforts of a novel scaffold derived from SCH772984 by employing hydrogen bond interactions specific for ERK in the binding pocket identified 1-(1H-pyrazolo[4,3-c]pyridin-6-yl)ureas as a viable lead series. Sequential SAR studies led to the identification of highly potent and selective ERK inhibitors with low molecular weight and high LE. Compound 21 exhibited potent target engagement and strong tumor regression in the BRAF(V600E) xenograft model.


Bioorganic & Medicinal Chemistry Letters | 2010

Design and synthesis of piperazine-indole p38α MAP kinase inhibitors with improved pharmacokinetic profiles

Xuefei Tan; Richland W. Tester; Gregory R. Luedtke; Sarvajit Chakravarty; Babu J. Mavunkel; John J. Perumattam; Qing Lu; Imad Nashashibi; Joon Jung; Jie Hu; Albert Liclican; Ramona Almirez; Jocelyn Tabora; Vinh Tran; Maureen Laney; Daniel E. Levy; Sundeep Dugar

Derivatives of the 4-fluorobenzyl dimethylpiperazine-indole class of p38alpha MAP kinase inhibitors are described. Biological evaluation of these compounds focused on maintaining activity while improving pharmacokinetic (PK) properties. Improved properties were observed for structures bearing substitutions on the benzylic methylene.

Researchain Logo
Decentralizing Knowledge