Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joon-Seok Choi is active.

Publication


Featured researches published by Joon-Seok Choi.


Journal of Pharmacology and Experimental Therapeutics | 2006

Ginsenoside-Rh2-Induced Mitochondrial Depolarization and Apoptosis Are Associated with Reactive Oxygen Species- and Ca2+-Mediated c-Jun NH2-Terminal Kinase 1 Activation in HeLa Cells

Young-Mi Ham; Jin-Hee Lim; Hye-Kyung Na; Joon-Seok Choi; Byoung-Duck Park; Hyungshin Yim; Seung-Ki Lee

We show here that Ca2+ and reactive oxygen species (ROS) are involved in the up-regulation of c-Jun NH2-terminal kinase 1 (JNK1) activity during apoptosis induced by ginsenoside Rh2 (G-Rh2) in HeLa, MCF10A-ras, and MCF7 cells. Addition of antioxidants such as N-acetyl-l-cysteine or catalase attenuates G-Rh2-induced ROS generation, JNK1 activation, and apoptosis. The overexpression of catalase down-regulates caspase-3 and JNK1 activities. G-Rh2 treatment of cells results in mitochondrial depolarization, second mitochondrial activator of caspase release, and translocation of Bax into the mitochondria, and these events are inhibited by antioxidants. Ca2+ is also involved in mitochondrial depolarization during G-Rh2-induced apoptosis. These results suggest that ROS and Ca2+ are important signaling intermediates leading to stress-activated protein kinase/extracellular signal-regulated kinase kinase 1/JNK1 activation and depolarization of the mitochondrial membrane potential in G-Rh2-induced apoptosis.


Journal of Biological Chemistry | 2003

The c-Jun N-terminal Kinase 1 Activity Is Differentially Regulated by Specific Mechanisms during Apoptosis

Young-Mi Ham; Joon-Seok Choi; Kwang-Hoon Chun; Sang-Hoon Joo; Seung-Ki Lee

We show here that JNK1 activity is rapidly up-regulated and prolonged by specific mechanisms during apoptosis induced by paclitaxel- or ginsenoside-Rh2 in SK-HEP-1 cells. The early phase of JNK1 activation is prevented in cells expressing the dominant negative SEK1 mutant, although this JNK1 perturbation does not prevent apoptotic cell death. The later phase of JNK1 activation, which is temporally coincided with caspase-dependent cleavage of JNK1-associated p21WAF1/CIP1, is efficiently prevented by expressing p21D112N, an uncleavable mutant of p21WAF1/CIP1 and this perturbation of JNK1 activation results in prevention of apoptosis. The later JNK1 activation and apoptotic progression are also prevented by co-treatments of cells with rottlerin, a PKC-δ inhibitor or z-VAD-fmk, a pan caspase inhibitor. We also provide evidence that apoptotic cell death is significantly promoted in cells expressing JNK1, while this apoptotic cell death is effectively suppressed in cells expressing the dominant negative JNK1 mutant (DN-JNK1) or JBD, a JNK inhibitor protein. Thus, the later phase of JNK1 activation, which is linked to a caspase-dependent mechanism that requires PKC-δ activity, is associated with the induction of apoptosis, while the early JNK1 activation that is associated with a SEK1-mediated mechanism is not directly involved in apoptotic progression.


Toxicology | 2010

Functional inactivation of triosephosphate isomerase through phosphorylation during etoposide-induced apoptosis in HeLa cells: potential role of Cdk2.

Won-Hee Lee; Joon-Seok Choi; Mi-Ran Byun; Kyo-tan Koo; Soona Shin; Seung-Ki Lee; Young-Joon Surh

Up-regulation of cyclin-dependent protein kinase 2 (Cdk2) activity has been suggested to be prerequisite for progression of apoptosis induced by various apoptotic stimuli. In this study, we applied a phospho-proteomic technique to screen target molecules of Cdk2 during etoposide-induced apoptosis. For this purpose, phosphoproteins from the cell lysates were enriched by using Fe³+-IMAC column chromatography and resolved on a high resolution 2D PAGE gel. We identified six phosphoproteins by the use of MALDI-TOF technique. The cellular levels of these phosphoproteins were markedly reduced in the presence of etoposide in HeLa cells transfected with dominant negative mutant construct of Cdk2. Among the six candidate phosphoproteins, human triosephosphate isomerase (TPI), a glycolytic enzyme, was found to be a direct substrate of Cdk2 during etoposide-induced apoptosis. In an in vitro phosphorylation assay, TPI purified by use of a baculoviral expression system was phosphorylated by recombinant Cyclin A/Cdk2 kinase. This led to reduced enzyme activity for the conversion of glucose aldehyde-3-phosphate to dihydroxyacetone phosphate. Such phosphorylation of TPI and a subsequent decrease in its enzyme activity were prevented by treatment with olomoucine, a specific inhibitor of Cdk2. The above findings, taken together, suggest TPI as a potential target protein of Cyclin A/Cdk2. Loss of catalytic activity of TPI as a consequence of phosphorylation of this glycolytic enzyme may disrupt energy production in etoposide-treated HeLa cells, rendering these cells prone to undergo apoptosis.


Journal of Cell Biology | 2006

Cleavage of Cdc6 by caspase-3 promotes ATM/ATR kinase-mediated apoptosis of HeLa cells.

Hyungshin Yim; In Sun Hwang; Joon-Seok Choi; Kwang-Hoon Chun; Ying Hua Jin; Young-Mi Ham; Kwang Youl Lee; Seung Ki Lee

We show that caspase-3 cleaves Cdc6 at D290/S and D442/G sites, producing p32-tCdc6 (truncated Cdc6) and p49-tCdc6, respectively, during etoposide- or tumor necrosis factor (TNF)-α–induced apoptosis. The expression of these tCdc6 proteins, p32- and p49-tCdc6, promotes etoposide-induced apoptosis. The expression of tCdc6 perturbs the loading of Mcm2 but not Orc2 onto chromatin and activates ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) kinase activities with kinetics similar to that of the phosphorylation of Chk1/2. The activation kinetics are consistent with elevated cellular levels of p53 and mitochondrial levels of Bax. The tCdc6-induced effects are all suppressed to control levels by expressing a Cdc6 mutant that cannot be cleaved by caspase-3 (Cdc6-UM). Cdc6-UM expression attenuates the TNF-α–induced activation of ATM and caspase-3 activities. When ATM or ATR is down-expressed by using the small interfering RNA technique, the TNF-α– or tCdc6-induced activation of caspase-3 activities is suppressed in the cells. These results suggest that tCdc6 proteins act as dominant-negative inhibitors of replication initiation and that they disrupt chromatin structure and/or induce DNA damage, leading to the activation of ATM/ATR kinase activation and p53–Bax-mediated apoptosis.


Apoptosis | 2007

Regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 by protein kinase Cδ-mediated phosphorylation

You-Take Oh; Kwang Hoon Chun; Byoung Duck Park; Joon-Seok Choi; Seung Ki Lee

Cyclin-dependent kinase (CDK) inhibitor p21WAF1/CIP1(-/-)-null mice have an increased incidence of tumor formation. Here, we demonstrate that p21WAF1/CIP1 is unstable in HeLa cells treated with siRNA duplexes that target PKCδ. PKCδ phosphorylates p21WAF1/CIP1 at a serine residue (146Ser) located in its C-terminal domain. In cells treated with 12-O-tetradecanoylphorbol 13-acetate, the levels of both p21WAF1/CIP1 and its 146Ser-phosphorylated form increased significantly. We also show that a substitution, resulting from a single nucleotide polymorphism (SNP) at 149Asp found in certain cancer patients, strongly compromises PKCδ-mediated phosphorylation at 146Ser and results in cells that are relatively resistant to TNFα-induced apoptosis. Thus, post-translational phosphorylation of p21WAF1/CIP1 is important from an apoptotic cell death, and may also have patho-physiological relevance for the development of human cancer.


Biochemical and Biophysical Research Communications | 2003

SEK1-dependent JNK1 activation prolongs cell survival during G-Rh2-induced apoptosis

Young-Mi Ham; Kwang-Hoon Chun; Joon-Seok Choi; Dong-Hyun Kim; Seung-Ki Lee

We provide here evidence that c-Jun N-terminal protein kinase 1 (JNK1) activity is differentially up-regulated during apoptosis of SK-HEP-1 cells after treatment with ginsenoside Rh2 (G-Rh2). The G-Rh2-mediated JNK1 activation that occurred for the first 10-30min was associated with SEK1 activity, but thereafter, the sustained activation was associated not with SEK1 activity, but with proteolytic cleavage of JNK1-associated p21(WAF1/CIP1). Supporting this is that the expression of the dominant negative SEK1 mutant effectively blocked the early JNK1 activation phase but did not alter the sustained activation phase or apoptosis. Furthermore, expression of p21D112N, an uncleavable mutant of p21(WAF1/CIP1), suppressed the later JNK1 activation. Moreover, the stable overexpression of ectopic JNK1 suppressed apoptosis while expression of the dominant negative JNK1 mutant promoted it. We propose that the early SEK1-associated JNK1 activation phase acts to prolong cell survival in response to apoptosis-inducing agents, thereby serving as an intervening checkpoint prior to the commitment to apoptosis.


Cancer Letters | 2010

Xylocydine, a novel Cdk inhibitor, is an effective inducer of apoptosis in hepatocellular carcinoma cells in vitro and in vivo

Seung-Ju Cho; Seung-Soo Lee; Y.-J. Kim; Byoung-Duck Park; Joon-Seok Choi; Linhua Liu; Young-Mi Ham; B. Moon Kim; Seung-Ki Lee

Hepatocellular carcinoma (HCC) frequently includes abnormalities in cell cycle regulators, including up-regulated cyclin-dependent kinase (Cdks) activities due to loss or low expression of Cdk inhibitors. In this study, we show that xylocydine, a cyclin-dependent kinase (Cdk) specific inhibitor, is a good anti-cancer drug candidate for HCC treatment. Xylocydine (50muM) selectively down-regulates the activity of Cdk1 and Cdk2, accompanied by significant cell growth inhibition in HCC cells. Xylocydine also strongly inhibits the activity of Cdk7 and Cdk9, in vitro as well as in cell cultures, that is temporally associated with apoptotic cell death in xylocydine-induced HCC cells. This is associated with inhibition of phosphorylation of RNA polymerase II at serine residues 5 and 2, which are targets of Cdk7 and Cdk9, respectively. The effects on apoptosis are concomitant with changes in the levels of anti-apoptotic proteins, Bcl-2, XIAP, and survivin, which are markedly down-regulated, and pro-apoptotic molecules, p53 and Bax, which are elevated in HCC cells after treatment with xylocydine. The up-regulated level of p53 was associated with increased stability of the protein, as levels of Ser15 and Ser392 phsophorylated p53 are similarly elevated in the inhibitor treated cells. We demonstrated that xylocydine can effectively suppress the growth of HCC xenografts in Balb/C-nude mice by preferentially inducing apoptosis in the xenografts, whereas the drug did not cause any apparent toxic effect on other tissues. Taken together, these data suggest that the novel Cdk inhibitor xylocydine is a good candidate for an anti-cancer drug for HCC therapy.


Stem Cells and Development | 2014

The Molecular Mechanism Underlying the Proliferating and Preconditioning Effect of Vitamin C on Adipose-Derived Stem Cells

Ji Hye Kim; Wang-Kyun Kim; Young Kwan Sung; Mi Hee Kwack; Seung Yong Song; Joon-Seok Choi; Sang Gyu Park; TacGhee Yi; Hyunjoo Lee; Dae-Duk Kim; Hyun Min Seo; Sun U. Song; Jong-Hyuk Sung

Although adipose-derived stem cells (ASCs) show promise for cell therapy, there is a tremendous need for developing ASC activators. In the present study, we investigated whether or not vitamin C increases the survival, proliferation, and hair-regenerative potential of ASCs. In addition, we tried to find the molecular mechanisms underlying the vitamin C-mediated stimulation of ASCs. Sodium-dependent vitamin C transporter 2 (SVCT2) is expressed in ASCs, and mediates uptake of vitamin C into ASCs. Vitamin C increased the survival and proliferation of ASCs in a dose-dependent manner. Vitamin C increased ERK1/2 phosphorylation, and inhibition of the mitogen-activated protein kinase (MAPK) pathway attenuated the proliferation of ASCs. Microarray and quantitative polymerase chain reaction showed that vitamin C primarily upregulated expression of proliferation-related genes, including Fos, E2F2, Ier2, Mybl1, Cdc45, JunB, FosB, and Cdca5, whereas Fos knock-down using siRNA significantly decreased vitamin C-mediated ASC proliferation. In addition, vitamin C-treated ASCs accelerated the telogen-to-anagen transition in C3H/HeN mice, and conditioned medium from vitamin C-treated ASCs increased the hair length and the Ki67-positive matrix keratinocytes in hair organ culture. Vitamin C increased the mRNA expression of HGF, IGFBP6, VEGF, bFGF, and KGF, which may mediate hair growth promotion. In summary, vitamin C is transported via SVCT2, and increased ASC proliferation is mediated by the MAPK pathway. In addition, vitamin C preconditioning enhanced the hair growth promoting effect of ASCs. Because vitamin C is safe and effective, it could be used to increase the yield and regenerative potential of ASCs.


Cancer Letters | 2010

Potentiation of etoposide-induced apoptosis in HeLa cells by co-treatment with KG-135, a quality-controlled standardized ginsenoside formulation

Won-Hee Lee; Joon-Seok Choi; Hyun Young Kim; Jeong-Hill Park; Byoung Duck Park; Seung Ju Cho; Seung-Ki Lee; Young-Joon Surh

Our previous studies demonstrated that KG-135, a quality-controlled red ginseng-specific formulation containing approximately equal amounts of three major ginsenosides (Rk1, Rg3 and Rg5), down-regulated G1 cyclin-dependent kinase in HeLa cells. In the present work, we have found that KG-135 potentates cytotoxicity of etoposide by modulating apoptotic signaling. Co-treatment of etoposide and KG-135 markedly elevated the expression and phosphorylation at the serine 15 residue of p53 as well as the cellular levels of Bax and p21(Waf1/Cip1). The increased accumulation and phosphorylation of p53 (Ser15) were attenuated by treatment of cells with wortmannin, a pan-phosphatidylinositol-3 kinase inhibitor. Moreover, co-treatment of etoposide and KG-135 enhanced mitochondrial localization of Bax. Our results indicate that etoposide-induced apoptosis in HeLa cells can be potentiated in the presence of KG-135 through a mechanism that involves the stabilization of p53 and the stimulation of Bax- and p21-mediated apoptotic signaling pathways. These findings suggest that KG-135 represents a useful candidate adjuvant for the treatment of cancers that could potentially minimize the adverse effects of current clinical chemotherapeutics.


Apoptosis | 2007

Cyclin-dependent protein kinase 2 activity is required for mitochondrial translocation of Bax and disruption of mitochondrial transmembrane potential during etoposide-induced apoptosis

Joon-Seok Choi; Soona Shin; Ying Hua Jin; Hyungshin Yim; Kyo-tan Koo; Kwang-Hoon Chun; You-Take Oh; Won Hee Lee; Seung-Ki Lee

Previous studies have suggested that upregulation of Cyclin A-dependent protein kinase 2 (Cdk2) activity is an essential event in apoptotic progression and the mitochondrial permeability transition in human cancer cells. Here, we show that upregulated Cyclin A/Cdk2 activity precedes the proteolytic cleavage of PARP and is correlated with the mitochondrial translocation of Bax and the loss of mitochondrial transmembrane potential (Δψm) during etoposide-induced apoptosis in human cervical adenocarcinoma (HeLa) cells. Etoposide-induced apoptotic cell death is efficiently prevented in cells that overexpress a dominant negative mutant of Cdk2 (Cdk2-dn) or p21WAF1/CIP1, a specific Cdk inhibitor. Conversely, apoptotic cell death is promoted in Cyclin A-expressing cells. Disruption of the mitochondrial transmembrane potential in etoposide-induced cells is prevented in cells that overexpress Cdk2-dn or p21WAF1/CIP1, while this transition is prominently promoted in Cyclin A-expressing cells. We screened for mitochondrial Cdk2 targets in the etoposide-induced cells and found that the mitochondrial level of Bax is elevated by more than three fold in etoposide-treated cells and this elevation is effectively prevented in cells expressing Cdk2-dn under the same conditions. Thus, we suggest that Cdk2 activity is involved in the mitochondrial translocation of Bax, which plays an important role in the mitochondrial membrane permeability transition during apoptotic progression.

Collaboration


Dive into the Joon-Seok Choi's collaboration.

Top Co-Authors

Avatar

Seung-Ki Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kwang-Hoon Chun

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Seung Ki Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Young-Mi Ham

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won-Hee Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ying Hua Jin

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dae-Duk Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge