Joonas Merikanto
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joonas Merikanto.
Journal of Geophysical Research | 2007
Joonas Merikanto; Ismo Napari; Hanna Vehkamäki; Tatu Anttila; Markku Kulmala
[1] Recently, the classical theory of sulfuric acid-ammonia-water (H2SO4-NH3-H2O) nucleation was reinvestigated by including the effect of stable ammonium bisulfate formation into calculations. The predicted nucleation rates lowered by many orders of magnitude, bringing them close to agreement with the available experiments on H2SO4-NH3-H2O nucleation. However, because of complex thermodynamics involved, the theoretical calculations of nucleation rates are computationally demanding, and sometimes the theory breaks down at specific concentrations and temperatures. Here we present parameterized equations of ternary H2SO4-NH3-H2O nucleation rates, critical cluster sizes, and critical cluster compositions. Our parameterizations reduce the computing time of these values by a factor of 10 5 compared with the calculations with the full thermodynamic model. Also, our parameterizations provide reliable estimates for ternary nucleation rates in cases when the full theory fails in isolated points of the parameter space. The parameterized nucleation rates are accurate to one order of magnitude in nucleation rate. Because of their computational efficiency, our parameterizations are particularly suitable for large-scale models of atmosphere. They are valid for temperatures above 235 K, sulfuric acid concentrations 5 � 10 4 –10 9 cm � 3 , ammonia mixing ratios 0.1–1000 ppt, relative humidities 5%–95%, and nucleation rates over 10 � 5 cm � 3 s � 1 . At these conditions, no significant nucleation occurs above 295 K.
Science | 2016
Eimear M. Dunne; H. Gordon; Andreas Kürten; Joao Almeida; Jonathan Duplissy; Christina Williamson; Ismael K. Ortega; K. J. Pringle; Alexey Adamov; Urs Baltensperger; Peter Barmet; François Benduhn; Federico Bianchi; Martin Breitenlechner; Antony D. Clarke; Joachim Curtius; Josef Dommen; Neil M. Donahue; Sebastian Ehrhart; Alessandro Franchin; R. Guida; Jani Hakala; Armin Hansel; Martin Heinritzi; Tuija Jokinen; Juha Kangasluoma; J. Kirkby; Markku Kulmala; Agnieszka Kupc; Michael J. Lawler
Observations made in the CLOUD chamber at CERN illuminate atmospheric particle formation. How new particles form New particle formation in the atmosphere produces around half of the cloud condensation nuclei that seed cloud droplets. Such particles have a pivotal role in determining the properties of clouds and the global radiation balance. Dunne et al. used the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN to construct a model of aerosol formation based on laboratory-measured nucleation rates. They found that nearly all nucleation involves either ammonia or biogenic organic compounds. Furthermore, in the present-day atmosphere, cosmic ray intensity cannot meaningfully affect climate via nucleation. Science, this issue p. 1119 Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.
Journal of Geophysical Research | 2016
Jonathan Duplissy; Joonas Merikanto; Alessandro Franchin; Georgios Tsagkogeorgas; Juha Kangasluoma; Daniela Wimmer; H. Vuollekoski; Siegfried Schobesberger; Katrianne Lehtipalo; David Brus; Neil M. Donahue; Hanna Vehkamäki; Joao Almeida; A. Amorim; Peter Barmet; Federico Bianchi; Martin Breitenlechner; Eimear M. Dunne; R. Guida; Henning Henschel; Heikki Junninen; J. Kirkby; Andreas Kürten; Agnieszka Kupc; Anni Määttänen; Vladimir Makhmutov; Serge Mathot; T. Nieminen; Antti Onnela; Arnaud P. Praplan
We report comprehensive, demonstrably contaminant-free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion-induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface-time of flight-mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (10^5 to 10^9 mol cm^(−3)), relative humidity (11% to 58%), temperature (207 K to 299 K), and total ion concentration (0 to 6800 ions cm^(−3)). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3 nm to 3.2 nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC-normalized CNT), which is described in a companion paper. The formation rates predicted by the QC-normalized CNT were extended from critical cluster sizes to measured sizes using the UHMA2 sectional particle microphysics model. Our results show, for the first time, good agreement between predicted and measured particle formation rates for the binary (neutral and ion-induced) sulfuric acid-water system. Formation rates increase with RH, sulfuric acid, and ion concentrations and decrease with temperature at fixed RH and sulfuric acid concentration. Under atmospheric conditions, neutral particle formation dominates at low temperatures, while ion-induced particle formation dominates at higher temperatures. The good agreement between the theory and our comprehensive data set gives confidence in using the QC-normalized CNT as a powerful tool to study neutral and ion-induced binary particle formation in atmospheric modeling.
Journal of Chemical Physics | 2004
Joonas Merikanto; Hanna Vehkamäki; Evgeni Zapadinsky
We have calculated the critical cluster sizes and homogeneous nucleation rates of water at temperatures and vapor densities corresponding to experiments by Wolk and Strey [J. Phys. Chem B 105, 11683 (2001)]. The calculations have been done with an expanded version of a Monte Carlo method originally developed by Vehkamaki and Ford [J. Chem. Phys. 112, 4193 (2000)]. Their method calculates the statistical growth and decay probabilities of molecular clusters. We have derived a connection between these probabilities and kinetic condensation and evaporation rates, and introduce a new way for the calculation of the work of formation of clusters. Three different interaction potential models of water have been used in the simulations. These include the unpolarizable SPC/E [J. Phys. Chem. 91, 6269 (1987)] and TIP4P [J. Chem. Phys. 79, 926 (1983)] models and a polarizable model by Guillot and Guissani [J. Chem. Phys. 114, 6720 (2001)]. We show that TIP4P produces critical cluster sizes and a temperature and vapor density dependence for the nucleation rate that agree well with the experimental data, although the magnitude of nucleation rate is constantly overestimated by a factor of 2 x 10(4). Guissani and Guillots model is somewhat less successful, but both the TIP4P and Guillot and Guissani models are able to reproduce a much better experimental temperature dependency of the nucleation rate than the classical nucleation theory. Using SPC/E results in dramatically too small critical clusters and high nucleation rates. The water models give different average binding energies for clusters. We show that stronger binding between cluster molecules suppresses the decay probability of a cluster, while the growth probability is not affected. This explains the differences in results from different water models.
AMBIO: A Journal of the Human Environment | 2012
Lynn M. Russell; Philip J. Rasch; Georgina M. Mace; Robert B. Jackson; J. G. Shepherd; Peter S. Liss; Margaret Leinen; David S. Schimel; Naomi E. Vaughan; Anthony C. Janetos; Philip W. Boyd; Richard J. Norby; Ken Caldeira; Joonas Merikanto; Paulo Artaxo; Jerry M. Melillo; M. Granger Morgan
Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO2) removal (CDR), which removes CO2 from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research.
Journal of Chemical Physics | 2010
Jan Julin; Ismo Napari; Joonas Merikanto; Hanna Vehkamäki
We have determined the surface tension of small Lennard-Jones clusters using molecular dynamics and Monte Carlo simulation methods as well as density functional theory calculations. For the two simulation methods the surface tension is calculated via a rigorous thermodynamic route using simulation data as input. The capillary approximation of the classical nucleation theory, where the surface tension of a planar surface is used for cluster surface, is found to be quite reasonable even when the cluster size is as small as 100-150 atoms. For smaller cluster sizes the cluster surface tension is considerably lower than the planar value. We have also obtained an approximative value for the Tolman length by extrapolating to the planar limit the difference between the equimolar radius and the radius of the surface of tension. A negative Tolman length is suggested by all the methods used.
Journal of Chemical Physics | 2007
Joonas Merikanto; Evgeni Zapadinsky; Antti Lauri; Ismo Napari; Hanna Vehkamäki
We carry out Monte Carlo simulations of physical Lennard-Jones and water clusters and show that the number of physical clusters in vapor is directly related to the virial equation of state. This relation holds at temperatures clearly below the critical temperatures, in other words, as long as the cluster-cluster interactions can be neglected--a typical assumption used in theories of nucleation. Above a certain threshold cluster size depending on temperature and interaction potential, the change in cluster work of formation can be calculated analytically with the recently proposed scaling law. The breakdown of the scaling law below the threshold sizes is accurately modeled with the low order virial coefficients. Our results indicate that high order virial coefficients can be analytically calculated from the lower order coefficients when the scaling law for cluster work of formation is valid. The scaling law also allows the calculation of the surface tension and equilibrium vapor density with computationally efficient simulations of physical clusters. Our calculated values are in good agreement with those obtained with other methods. We also present our results for the curvature dependent surface tension of water clusters.
Journal of Chemical Physics | 2006
Joonas Merikanto; Evgeni Zapadinsky; Hanna Vehkamäki
We determine the nucleation ability of argon clusters from Monte Carlo simulations. The nucleation rate appears to be defined by a sole characteristic of the clusters, namely, the stability. The stability is calculated as the ratio of grand canonical growth and decay rates and can be assigned to individual cluster configurations. We study the connection between the stability of the cluster configurations and their volume and total potential energy. Neither the potential energy nor the volume of a cluster configuration has a clear relation to its stability, and thus to the nucleation ability. On the other hand, we show that it is possible to use a specific volume for each cluster size to calculate the work of the cluster formation. These clusters with a unique volume have the same average stability as the full set of clusters. Our simulation method allows us to study the effect of possible deviations from equilibrium in the cluster configuration distributions. We argue that the nucleation process itself can produce a source for such a deviation. We show that even a small deviation from equilibrium in the cluster configuration distribution can lead to a dramatic deceleration of the nucleation rate. Although our simulations may overestimate the magnitude of the effect, they give qualitative estimates for its importance.
Journal of Geophysical Research | 2009
Joonas Merikanto; Ismo Napari; Hanna Vehkamäki; Tatu Anttila; Markku Kulmala
[1] In the paper ‘‘New parameterization of sulfuric acidammonia-water ternary nucleation rates at tropospheric conditions’’ by J. Merikanto et al. (J. Geophys. Res., 112, D15207, doi:10.1029/2006JD007977, 2007) the reported coefficients in the parameterized equation are numerically inaccurate for the calculation of ternary nucleation rates. The coefficients were given with six significant digits. However, this precision is not sufficient. Coefficients with 16 significant digits are given in Table 1. We also provide a Fortran code that calculates the reported parameterized nucleation rates and critical cluster sizes accurately (see auxiliary material). [2] Also, the term containing f15 in equation (8) in paragraph 18 should be multiplied by RH. The correct equation is
Journal of Geophysical Research | 2017
Anni Määttänen; Joonas Merikanto; Henning Henschel; Jonathan Duplissy; R. Makkonen; Ismael K. Ortega; Hanna Vehkamäki
We have developed new parameterizations of electrically neutral homogeneous and ion-induced sulfuric acid - water particle formation for large ranges of environmental conditions, based on an improved model that has been validated against a particle formation rate data set produced by Cosmics Leaving OUtdoor Droplets (CLOUD) experiments at CERN. The model uses a thermodynamically consistent version of the Classical Nucleation Theory normalized using quantum chemical data. Unlike the earlier parameterizations for H 2 SO 4 -H 2 O nucleation, the model is applicable to extreme dry conditions where the one-component sulfuric acid limit is approached. Parameterizations are presented for the critical cluster sulfuric acid mole fraction, the critical cluster radius, the total number of molecules in the critical cluster, and the particle formation rate. If the critical cluster contains only one sulfuric acid molecule, a simple formula for kinetic particle formation can be used: this threshold has also been parameterized. The parameterization for electrically neutral particle formation is valid for the following ranges: temperatures 165-400 K, sulfuric acid concentrations 10 4 -10 13 cm −3 and relative humidities 0.001-100%. The ion-induced particle formation parameterization is valid for temperatures 195-400 K, sulfuric acid concentrations 10 4 -10 16 cm −3 and relative humidities 10 −5 -100%. The new parameterizations are thus applicable for the full range of conditions in the Earths atmosphere relevant for binary sulfuric acid - water particle formation, including both tropospheric and stratospheric conditions. They are also suitable for describing particle formation in the atmosphere of Venus.