Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joong-Hoon Ahn is active.

Publication


Featured researches published by Joong-Hoon Ahn.


Applied and Environmental Microbiology | 2012

Production of a Novel Quercetin Glycoside through Metabolic Engineering of Escherichia coli

Jeong-A Yoon; Bong-Gyu Kim; Woo Ju Lee; Yoongho Lim; Youhoon Chong; Joong-Hoon Ahn

ABSTRACT Most flavonoids exist as sugar conjugates. Naturally occurring flavonoid sugar conjugates include glucose, galactose, glucuronide, rhamnose, xylose, and arabinose. These flavonoid glycosides have diverse physiological activities, depending on the type of sugar attached. To synthesize an unnatural flavonoid glycoside, Actinobacillus actinomycetemcomitans gene tll (encoding dTDP-6-deoxy-l-lyxo-4-hexulose reductase, which converts the endogenous nucleotide sugar dTDP-4-dehydro-6-deoxy-l-mannose to dTDP-6-deoxytalose) was introduced into Escherichia coli. In addition, nucleotide-sugar dependent glycosyltransferases (UGTs) were screened to find a UGT that could use dTDP-6-deoxytalose. Supplementation of this engineered strain of E. coli with quercetin resulted in the production of quercetin-3-O-(6-deoxytalose). To increase the production of quercetin 3-O-(6-deoxytalose) by increasing the supplement of dTDP-6-deoxytalose in E. coli, we engineered nucleotide biosynthetic genes of E. coli, such as galU (UTP-glucose 1-phosphate uridyltransferase), rffA (dTDP-4-oxo-6-deoxy-d-glucose transaminase), and/or rfbD (dTDP-4-dehydrorahmnose reductase). The engineered E. coli strain produced approximately 98 mg of quercetin 3-O-(6-deoxytalose)/liter, which is 7-fold more than that produced by the wild-type strain, and the by-products, quercetin 3-O-glucose and quercetin 3-O-rhamnose, were also significantly reduced.


Fungal Genetics and Biology | 2008

MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae

Mihwa Yi; Jin-Hyoung Park; Joong-Hoon Ahn; Yong-Hwan Lee

The protein kinase Snf1 is a major component of the glucose derepression pathway in yeast and a regulator of gene expression for the cell wall degrading enzyme (CWDE) in some plant pathogenic fungi. To address the molecular function of Snf1 in Magnaporthe oryzae, which causes the rice blast disease, MoSNF1 was cloned and functionally characterized using gene knock-out strategies. MoSNF1 functionally complemented the growth defect of the yeast snf1 mutant on a non-fermenting carbon source. However, the growth rate of the Deltamosnf1 mutant on various carbon sources was reduced independent of glucose, and the expression of the CWDE genes in the mutant was induced during derepressing condition like the wild type. The pre-penetration stage including conidial germination and appressorium formation of the Deltamosnf1 was largely impaired, and the pathogenicity of the Deltamosnf1 was significantly reduced. Most strikingly, the Deltamosnf1 mutant produced only a few conidia and had a high frequency of abnormally shaped conidia compared to the wild type. Our results suggest that MoSNF1 is a functional homolog of yeast Snf1, but its contribution to sporulation, vegetative growth and pathogenicity is critical in M. oryzae.


Journal of Agricultural and Food Chemistry | 2012

Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli.

Bong-Gyu Kim; Hyeon Jeong Kim; Joong-Hoon Ahn

Biotransformation of flavonoids using Escherichia coli harboring specific glycosyltransferases is an excellent method for the regioselective synthesis of flavonoid glycosides. Flavonol rhamnosides have been shown to contain better antiviral and antibacterial activities compared to flavonol aglycones. To synthesize flavonoid rhamnoside, a strain of E. coli expressing UDP-rhamnose flavonol glycosyltransferase (AtUGT78D1) from Arabidopsis thaliana was used to produce quercetin 3-O-rhamnoside. The biotransformation of quercetin using this E. coli transformant resulted in the production of quercetin 3-O-rhamnoside as a major product. A strain of E. coli rfbD (encoding dTDP-4-dehydrorhamnose reductase) expressing AtUGT78D1, which is involved in the final step of thymidine diphosphate rhamnose (TDP-rhamnose) biosynthesis, did not produce quercetin 3-O-rhamnoside, meaning that AtUGT78D1 used endogenous TDP-rhamnose as a sugar donor to produce quercetin 3-O-rhamnoside. The production of quercetin 3-O-rhamnoside could be increased by up to 160% by co-expressing AtUGT78D1 and rhamnose synthase gene 2 (RHM2), which catalyzes the conversion of UDP-glucose into UDP-rhamnose. Using an E. coli strain harboring AtUGT78D1 and RHM2, 150 mg/L quercetin 3-O-rhamnoside and 200 mg/L kaempferol 3-O-rhamnoside were produced in 48 h.


Planta | 2008

Cation dependent O-methyltransferases from rice

Yoon Jung Lee; Bong Gyu Kim; Youhoon Chong; Yoongho Lim; Joong-Hoon Ahn

Two lower molecular mass OMT genes (ROMT-15 and -17) were cloned from rice and expressed in Escherichia coli as glutathione S-transferase fusion proteins. ROMT-15 and -17 metabolized caffeoyl-CoA, flavones and flavonols containing two vicinal hydroxyl groups, although they exhibited different substrate specificities. The position of methylation in both luteolin and quercetin was determined to be the 3′ hydroxyl group and myricetin and tricetin were methylated not only at 3′ but also at 5′ hydroxyl groups. ROMT-15 and -17 are cation-dependent and mutation of the predicted metal binding sites resulted in the loss of the enzyme activity, indicating that the metal ion has a critical role in the enzymatic methylation.


Bioscience, Biotechnology, and Biochemistry | 2006

Characterization of Flavonoid 7-O-Glucosyltransferase from Arabidopsis thaliana

Jeong Ho Kim; Bong Gyu Kim; Younghee Park; Jae Hyung Ko; Chae Eun Lim; Jun Lim; Yoongho Lim; Joong-Hoon Ahn

Most flavonoids found in plants exist as glycosides, and glycosylation status has a wide range of effects on flavonoid solubility, stability, and bioavailability. Glycosylation of flavonoids is mediated by Family 1 glycosyltransferases (UGTs), which use UDP-sugars, such as UDP-glucose, as the glycosyl donor. AtGT-2, a UGT from Arabidopsis thaliana, was cloned and expressed in Escherichia coli as a gluthatione S-transferase fusion protein. Several compounds, including flavonoids, were tested as potential substrates. HPLC analysis of the reaction products indicated that AtGT-2 transfers a glucose molecule into several different kinds of flavonoids, eriodictyol being the most effective substrate, followed by luteolin, kaempferol, and quercetin. Based on comparison of HPLC retention times with authentic flavonoid 7-O-glucosides and nuclear magnetic resonance spectroscopy, the glycosylation position in the reacted flavonoids was determined to be the C-7 hydroxyl group. These results indicate that AtGT-2 encodes a flavonoid 7-O-glucosyltransferase.


Applied Microbiology and Biotechnology | 2012

Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2.

Bong-Gyu Kim; Su Hyun Sung; Joong-Hoon Ahn

Biotransformation of flavonoids using Escherichia coli harboring nucleotide sugar-dependent uridine diphosphate-dependent glycosyltransferases (UGTs) commonly results in the production of a glucose conjugate because most UGTs are specific for UDP-glucose. The Arabidopsis enzyme AtUGT78D2 prefers UDP-glucose as a sugar donor and quercetin as a sugar acceptor. However, in vitro, AtUGT78D2 could use UDP-N-acetylglucosamine as a sugar donor, and whole cell biotransformation of quercetin using E. coli harboring AtUGT78D2 produced quercetin 3-O-N-acetylglucosamine. In order to increase the production of quercetin 3-O-N-acetylglucosamine via biotransformation, two E. coli mutant strains deleted in phosphoglucomutase (pgm) or glucose-1-phosphate uridylyltransferase (galU) were created. The galU mutant produced up to threefold more quercetin 3-O-N-acetylglucosamine than wild type, resulting in the production of 380-mg/l quercetin 3-O-N-acetylglucosamine and a negligible amount of quercetin 3-O-glucoside. These results show that construction of bacterial strains for the synthesis of unnatural flavonoid glycosides is possible through rational selection of the nucleotide sugar-dependent glycosyltransferase and engineering of the nucleotide sugar metabolic pathway in the host strain.


Plant Cell Reports | 2006

Molecular cloning, expression and characterization of a glycosyltransferase from rice

Jae Hyung Ko; Bong Gyu Kim; Hor-Gil Hur; Yoongho Lim; Joong-Hoon Ahn

Secondary plant metabolites undergo several modification reactions, including glycosylation. Glycosylation, which is mediated by UDP-glycosyltransferase (UGT), plays a role in the storage of secondary metabolites and in defending plants against stress. In this study, we cloned one of the glycosyltransferases from rice, RUGT-5 resulting in 40–42% sequence homology with UGTs from other plants. RUGT-5 was functionally expressed as a glutathione S-transferase fusion protein in Escherichia coli and was then purified. Eight different flavonoids were used as tentative substrates. HPLC profiling of reaction products displayed at least two peaks. Glycosylation positions were located at the hydroxyl groups at C-3, C-7 or C-4′ flavonoid positions. The most efficient substrate was kaempferol, followed by apigenin, genistein and luteolin, in that order. According to in vitro results and the composition of rice flavonoids the in vivo substrate of RUGT-5 was predicted to be kaempferol or apigenin. To our knowledge, this is the first time that the function of a rice UGT has been characterized.


Journal of Plant Biology | 2007

Anthocyanin content in rice is related to expression levels of anthocyanin biosynthetic genes

Bong Gyu Kim; Jeong Ho Kim; Shin Young Min; Kwang-Hee Shin; Jihye Kim; Hong Yeol Kim; Su Noh Ryu; Joong-Hoon Ahn

The composition of anthocyanins was analyzed in two rice cultivais, ‘llpum’ showed no detectable levels, while ‘Heugjinju’ contained three types of anthocyanins: cyanidin, cyanidin 3-O-glucoside, and peonidin 3-O-glucoside. We also assessed the expression of anthocyanin biosynthetic genes — for phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), flavanone 3β-hydroxylase (F3H), dihydroflavonol reductase (DFR), and anthocyanin synthase (ANS)-in different tissues of those cultivars. All five genes were expressed more in the leaves and seeds of ‘Heugjinju’ than in ‘Ilpum’, with the greatest amount of transcript being detected in ‘Heugjinju’ seeds. Two genes,DFR andANS, had relatively high expression levels and were specific for anthocyanin biosynthesis. Furthermore, expression of CHS,F3H, DFR, andANS was enhanced during seed maturation and was correlated with ambient temperature during seedling growth.


Applied Microbiology and Biotechnology | 2015

Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives

Bong Gyu Kim; So‑Mi Yang; So Yeon Kim; Mi Na Cha; Joong-Hoon Ahn

Flavonoids are plant secondary metabolites containing several hydroxyl groups that are targets for modification reactions such as methylation and glycosylation. In plants, flavonoids are present as glycones. Although glucose is the most common sugar attached to flavonoids, arabinose, galactose, glucuronic acid, rhamnose, and xylose are also linked to flavonoids. Depending on the kind and the position of the attached sugar, flavonoid glycones show different biological properties. Flavonoid-O-glycosides are synthesized by uridine diphosphate-dependent glycosyltransferases (UGTs), which use nucleotide sugar as a sugar donor and a diverse compound as a sugar acceptor. Recently, diverse flavonoid-O-glycosides have been synthesized in Escherichia coli by introducing UGTs from plants and bacteria and modifying endogenous pathways. The nucleotide sugar biosynthesis pathway in E. coli has been engineered to provide the proper nucleotide sugar for flavonoid-O-glycoside biosynthesis. In this review, we will discuss recent advances in flavonoid-O-glycoside biosynthesis using engineered E. coli.


Journal of Molecular Biology | 2009

Crystal structure of metal-dependent allantoinase from Escherichia coli.

Kwang-Soo Kim; Myung-Il Kim; Jiwoung Chung; Joong-Hoon Ahn; Sangkee Rhee

Allantoinase acts as a key enzyme for the biogenesis and degradation of ureides by catalyzing the conversion of (S)-allantoin into allantoate, the final step in the ureide pathway. Despite limited sequence similarity, biochemical studies of the enzyme suggested that allantoinase belongs to the amidohydrolase family. In this study, the crystal structure of allantoinase from Escherichia coli was determined at 2.1 A resolution. The enzyme consists of a homotetramer in which each monomer contains two domains: a pseudo-triosephosphate-isomerase barrel and a beta-sheet. Analogous to other enzymes in the amidohydrolase family, allantoinase retains a binuclear metal center in the active site, embedded within the barrel fold. Structural analyses demonstrated that the metal ions in the active site ligate one hydroxide and six residues that are conserved among allantoinases from other organisms. Functional analyses showed that the presence of zinc in the metal center is essential for catalysis and enantioselectivity of substrate. Both the metal center and active site residues Asn94 and Ser317 play crucial roles in dictating enzyme activity. These structural and functional features are distinctively different from those of the metal-independent allantoinase, which was very recently identified.

Collaboration


Dive into the Joong-Hoon Ahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hor-Gil Hur

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiyoung Seo

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge